- 标题
- 摘要
- 关键词
- 实验方案
- 产品
-
Excitonic complexes in InAs/InP nanowire quantum dots
摘要: InAs quantum dots embedded in InP nanowires form an important platform for basic research studies, as well as for quantum dot applications. Notably, understanding of nanowire quantum dot spectral properties is essential in both cases. Therefore, in this work we use atomistic theory to study spectra of the single exciton (X ), the biexciton (X X ), the triexciton (X X X ), and the positively and negatively charged trions (X + and X ?) con?ned in these nanostructures. We focus on the role of vertical and lateral con?nement, therefore, we systematically study a large family of quantum dots with different heights and diameters, and ?nd the important role of correlations due to presence of higher states. We ?nd that the order of excitonic binding energies is a characteristic feature of InAs/InP nanowire quantum dots being (ordered from negative to positive values): X ?, X X , and X +, with strongly bound X ?, rather weakly bound X X , and typically unbound X +. Next, we determine the key role of alloy randomness due to intermixing, which turns out to especially important for larger quantum dot heights and phosphorous contents over 40%. In selected cases, the alloying can lead to an unbound biexciton, and can even reverse ordering of excitonic lines.
关键词: InAs/InP nanowire quantum dots,atomistic theory,binding energies,alloy randomness,excitonic complexes
更新于2025-09-23 15:21:01
-
Size-controlled excitonic effects on electronic and optical properties of Sb <sub/>2</sub> S <sub/>3</sub> nanowires
摘要: In this work, the electronic and optical properties of one-dimensional (1D) Sb2S3 nanowires (NWs) with different sizes are investigated using first-principles calculations. The indirect–direct band transition of Sb2S3 NWs can be tuned effectively by the NW size and various uniaxial strains. In the Sb2S3 NWs, the quantum confinement effects result in wider bandgaps while the significantly enhanced electron–hole interaction that is expected to produce excitonic bound states generates a bandgap narrowing. The exciton binding energies for the Sb2S3 NWs are predicted by the effective masses of electrons and holes to lie in the range of 0–1 eV, which are larger than that of bulk Sb2S3, suggesting that excitons in Sb2S3 NWs may bind possible defects to promote luminescence. The size-controlled absorption edge blueshift and redshift of Sb2S3 NWs suggest that Sb2S3 NWs may be promising in the applications of nanoscale light emitting devices.
关键词: optical properties,first-principles calculations,quantum confinement effects,light emitting devices,electronic properties,exciton binding energies,Sb2S3 nanowires
更新于2025-09-16 10:30:52
-
Side chain effect on conjugated polymer/fullerene interfaces in organic solar cells: a DFT study
摘要: Considerable experimental research has been conducted on the influence of polymer alkyl side chains on the performance of bulk heterojunction organic solar cells. However, greater insight into the role of alkyl side chains in the polymer/fullerene interfacial regions is still needed. Using the dispersion-corrected density functional theory, we investigate the effect of alkyl side chains on the binding energies and electronic structures of various molecular pairings of fullerenes and monomers of organic copolymers (e.g. a pair of PC71BM and a monomer of copolymer PTB7 based on the thieno[3,4-b]thiophene/benzodithiophene repeat unit, PCBM and a copolymer PCDTBT based on 2,7-carbazole/dithienyl-2,1,3-benzothiazole and PC71BM and a copolymer PffBT4T-2OD based on difluorobenzothiadiazole/quaterthiophene). We find that the trends of the magnitudes of the binding energies vary with the lengths, types (branched or linear), and branching positions of alkyl side chains. Whenever possible, these results are compared with the efficiency trends of the corresponding organic solar cells. With the help of this comparison optimal side chain arrangements in bulk heterogeneous organic solar cells are identified. It is expected that these insights will aid in the production of more efficient organic photovoltaics.
关键词: binding energies,polymer alkyl side chains,organic solar cells,dispersion-corrected density functional theory,bulk heterojunction,electronic structures
更新于2025-09-12 10:27:22
-
Designing dithienonaphthalene based acceptor materials with promising photovoltaic parameters for organic solar cells
摘要: Scientists are focusing on non-fullerene based acceptors due to their efficient photovoltaic properties. Here, we have designed four novel dithienonaphthalene based acceptors with better photovoltaic properties through structural modification of a well-known experimentally synthesized reference compound R. The newly designed molecules have a dithienonaphthalene core attached with different 2-(5,6-difluoro-2-methylene-3-oxo-2,3-dihydroinden-1-ylidene)malononitrile (H1), 2-(5,6-dicyano-2-methylene-3-oxo-2,3-dihydroinden-1-ylidene)-malononitrile (H2), 2-(5-methylene-6-oxo-5,6-dihydrocylopenta[c]thiophe-4-ylidene)-malononitrile (H3) and 2-(3-(dicyanomethylene)-2,3-dihydroinden-1-yliden)malononitrile (H4) acceptor moieties (end-capped). The photovoltaic parameters of the designed molecules are discussed in comparison with those of the reference R. All newly designed molecules show a reduced HOMO–LUMO energy gap (2.17 eV to 2.28 eV), compared to the reference R (2.31 eV). Charger transfer from donor to acceptor is confirmed by a frontier molecular orbital (FMO) diagram. All studied molecules show extensive absorption in the visible region and absorption maxima are red-shifted compared to R. All investigated molecules have lower excitation energies which reveal high charge transfer rates, as compared to R. To evaluate the open circuit voltage, the designed acceptor molecules are blended with a well-known donor PBDB-T. The molecule H3 has the highest Voc value (1.88 V). TDM has been performed to show the behaviour of electronic excitation processes and electron hole location between the donor and acceptor unit. The binding energies of all molecules are lower than that of R. The lowest is calculated for H3 (0.24 eV) which reflects the highest charge transfer. The reorganization energy value for both the electrons and holes of H2 is lower than R which is indicative of the highest charge transfer rate.
关键词: absorption maxima,binding energies,reorganization energy,photovoltaic properties,open circuit voltage,charge transfer,dithienonaphthalene,HOMO–LUMO energy gap,non-fullerene based acceptors
更新于2025-09-12 10:27:22