修车大队一品楼qm论坛51一品茶楼论坛,栖凤楼品茶全国楼凤app软件 ,栖凤阁全国论坛入口,广州百花丛bhc论坛杭州百花坊妃子阁

oe1(光电查) - 科学论文

2 条数据
?? 中文(中国)
  • Characterization of Nanoencapsulated Food Ingredients || Confocal laser scanning microscopy (CLSM) of nanoencapsulated food ingredients

    摘要: Encapsulation is a process of entrapping bioactive compounds (e.g., antioxidants, antimicrobials, essential fatty acids, probiotics, vitamins, etc.) within a protecting wall material such as lipid-based or biopolymeric carriers. Encapsulation can help to enhance the stability and bioaccessibility as well as controlled release of bioactive materials and mask unwanted properties of encapsulated ingredients. Nanoparticles have a diameter range from 0.1 nm to 1 μm and show great potential to develop new products and applications in food and packaging industries. The performance of nanocarriers formed by encapsulation processes fundamentally depends on various technical aspects such as carrier wall thickness, morphology, and quality. Therefore, measuring and monitoring of coating thickness and morphology of the nanocarriers is an essential process to control the nanoencapsulation procedure. An excessively thick coating layer would lead to delayed release of bioactive materials, increase of coating time, and consequently, encapsulation costs, while an excessively thin capsule would cause interruption in the release and stability of nanoparticles. Spectroscopic and microscopic techniques are important tools for analyzing the morphology, structure, and coating thickness of nanoparticles. Different electron microscopies have been introduced to investigate nano- and micro-carriers. Scanning electronic microscopy (SEM), transmission electron microscopy (TEM), atomic force microscopy (AFM), near-IR spectra, laser-induced breakdown spectroscopy (LIBS), and confocal laser scanning microscopy (CLSM) are some of these light and microscopic methods.

    关键词: Encapsulation,Nanoencapsulated food ingredients,Confocal laser scanning microscopy,Bioactive compounds,Nanoparticles

    更新于2025-09-23 15:19:57

  • Different Postharvest Responses of Fresh-Cut Sweet Peppers Related to Quality and Antioxidant and Phenylalanine Ammonia Lyase Activities during Exposure to Light-Emitting Diode Treatments

    摘要: The in?uence of emitting diode (LED) treatments for 8 h per day on functional quality of three types of fresh-cut sweet peppers (yellow, red, and green) were investigated after 3, 7, 11, and 14 days postharvest storage on the market shelf at 7°C. Red LED light (660 nm, 150 μmol m?2 s?1) reduced weight loss to commercially acceptable level levels (≤2.0%) in fresh-cuts of yellow and green sweet peppers at 7 and 11 d, respectively. Blue LED light (450 nm, 100 μmol m?2 s?1) maintained weight loss acceptable for marketing in red fresh-cut sweet peppers up to 11 d. Highest marketability with minimum changes in color di?erence (?E) and functional compounds (total phenols, ascorbic acid content, and antioxidant activity) were obtained in yellow and green sweet pepper fresh-cuts exposed to red LED light up to 7 and 11 d, respectively, and for red sweet pepper fresh-cuts exposed to blue LED light for 11 d. Red LED light maintained the highest concentrations of β carotene, chlorophyll, and lycopene in yellow, green, and red sweet pepper fresh-cuts up to 7 d. Similarly, blue LED light showed the highest increase in lycopene concentrations for red sweet pepper fresh-cuts up to 7 d. Red LED (yellow and green sweet peppers) and blue LED (red sweet pepper) lights maintained phenolic compounds by increasing phenylalanine ammonia lyase activity. Thus, the results indicate a new approach to improve functional compounds of di?erent types of fresh-cut sweet pepper.

    关键词: postharvest quality,antioxidant activity,bioactive compounds,photo technology,Capsicum annuum L.,shelf life

    更新于2025-09-11 14:15:04