- 标题
- 摘要
- 关键词
- 实验方案
- 产品
-
Dose distribution verification in high-dose-rate brachytherapy using a highly sensitive normoxic N-vinylpyrrolidone polymer gel dosimeter
摘要: Rapid technological advances in high-dose-rate brachytherapy have led to a requirement for greater accuracy in treatment planning system calculations and in the verification of dose distributions. In high-dose-rate brachytherapy, it is important to measure the dose distribution in the low-dose region at a position away from the source in addition to the high-dose range in the proximity of the source. The aim of this study was to investigate the accuracy of a treatment plan designed for prostate cancer in the low-dose range using a normoxic N-vinylpyrrolidone-based polymer gel (VIPET gel) dosimeter containing inorganic salt as a sensitizer (iVIPET). The dose response was evaluated on the basis of the transverse relaxation rate (R2) measured by magnetic resonance scanning. In the verification of the treatment plan, gamma analysis showed that the dose distributions obtained from the polymer gel dosimeter were in good agreement with those calculated by the treatment planning system. The gamma passing rate according to the 2%/2 mm criterion was 97.9%. The iVIPET gel dosimeter provided better accuracy for low doses than the normal VIPET gel dosimeter, demonstrating the potential to be a useful tool for quality assurance of the dose distribution delivered by high-dose-rate brachytherapy.
关键词: Iridium-192,MRI,High-dose-rate brachytherapy,Polymer gel dosimeter
更新于2025-09-23 15:23:52
-
Air-kerma strength determination of a new directional <sup>103</sup> Pd source
摘要: Purpose: A new directional 103Pd planar source array called a CivaSheet? has been developed by CivaTech Oncology, Inc., for potential use in low-dose-rate (LDR) brachytherapy treatments. The array consists of multiple individual polymer capsules called CivaDots, containing 103Pd and a gold shield that attenuates the radiation on one side, thus defining a hot and cold side. This novel source requires new methods to establish a source strength metric. The presence of gold material in such close proximity to the active 103Pd region causes the source spectrum to be significantly different than the energy spectra of seeds normally used in LDR brachytherapy treatments. In this investigation, the authors perform air-kerma strength (SK) measurements, develop new correction factors for these measurements based on an experimentally verified energy spectrum, and test the robustness of transferring SK to a well-type ionization chamber. Methods: SK measurements were performed with the variable-aperture free-air chamber (VAFAC) at the University of Wisconsin Medical Radiation Research Center. Subsequent measurements were then performed in a well-type ionization chamber. To realize the quantity SK from a directional source with gold material present, new methods and correction factors were considered. Updated correction factors were calculated using the MCNP6 Monte Carlo code in order to determine SK with the presence of gold fluorescent energy lines. In addition to SK measurements, a low-energy high-purity germanium (HPGe) detector was used to experimentally verify the calculated spectrum, a sodium iodide (NaI) scintillating counter was used to verify the azimuthal and polar anisotropy, and a well-type ionization chamber was used to test the feasibility of disseminating SK values for a directional source within a cylindrically symmetric measurement volume. Results: The UW VAFAC was successfully used to measure the SK of four CivaDots with reproducibilities within 0.3%. Monte Carlo methods were used to calculate the UW VAFAC correction factors and the calculated spectrum emitted from a CivaDot was experimentally verified with HPGe detector measurements. The well-type ionization chamber showed minimal variation in response (<1.5%) as a function of source positioning angle, indicating that an American Association of Physicists in Medicine (AAPM) Accredited Dosimetry Calibration Laboratory calibrated well chamber would be a suitable device to transfer an SK-based calibration to a clinical user. SK per well-chamber ionization current ratios were consistent among the four dots measured. Additionally, the measurements and predictions of anisotropy show uniform emission within the solid angle of the VAFAC, which demonstrates the robustness of the SK measurement approach. Conclusions: This characterization of a new 103Pd directional brachytherapy source helps to establish calibration methods that could ultimately be used in the well-established AAPM Task Group 43 formalism. Monte Carlo methods accurately predict the changes in the energy spectrum caused by the fluorescent x-rays produced in the gold shield.
关键词: TG43,directional sources,dosimetry,air-kerma strength,brachytherapy
更新于2025-09-23 15:22:29
-
Interventional Photothermal Therapy Enhanced Brachytherapy: A New Strategy to Fight Deep Pancreatic Cancer
摘要: Photothermal–radiotherapy (PT–RT) is an effective strategy for relieving hypoxia-related radiotherapy resistance and inducing tumor-specific cell apoptosis/necrosis. Nevertheless, limited tissue penetration of near-infrared (NIR) laser and the serious side effects of high-dose radiation severely hinder its applications for deep tumors. An interventional photothermal–brachytherapy (IPT–BT) technology is proposed here for the internal site-specific treatment of deep tumors. This technology utilizes a kind of biodegradable honeycomb-like gold nanoparticles (HGNs) acting as both internal photothermal agents and radiosensitizers. A high tumor inhibition rate of 96.6% is achieved in SW1990 orthotopic pancreatic tumor-bearing mice by HGNs-mediated IPT–BT synergistic therapy. Interestingly, this approach effectively causes double-stranded DNA damage and improves the oxygen supply and the penetration of nanoparticles inside the tumor. Therefore, it is believed that this strategy may open up a new avenue for PT–RT synergistic therapy of deep malignant tumors and has a significant impact on the future clinical translation.
关键词: photothermal therapy,pancreatic cancer,biodegradable,interventional,brachytherapy,honeycomb-like gold
更新于2025-09-23 15:22:29
-
A Monte Carlo based dosimetric characterization of Esteya <sup>?</sup> , an electronic surface brachytherapy unit
摘要: The purpose of this work is threefold: First, to obtain the phase-space of an electronic brachytherapy (eBT) system designed for surface skin treatments. Second, to explore the use of some efficiency enhancing (EFEN) strategies in the determination of the phase-space. Third, to use the phase-space previously obtained to perform a dosimetric characterization of the Esteya eBT system. Methods: The Monte Carlo study of the 69.5 kVp x-ray beam of the Esteya? unit (Elekta Brachytherapy, Veenendaal, The Netherlands) was performed with PENELOPE2014. The EFEN strategies included the use of variance reduction techniques and mixed Class II simulations, where transport parameters were fine-tuned. Four source models were studied varying the most relevant parameters characterizing the electron beam impinging the target: the energy spectrum (mono-energetic or Gaussian shaped), and the electron distribution over the focal spot (uniform or Gaussian shaped). Phase-spaces obtained were analyzed to detect differences in the calculated data due to the EFEN strategy or the source configuration. Depth dose curves and absorbed dose profiles were obtained for each source model and compared to experimental data previously published. Results: In our EFEN strategy, the interaction forcing variance reduction (VRIF) technique increases efficiency by a factor ~ 20. Tailoring the transport parameters values (C1 and C2) does not increase the efficiency in a significant way. Applying a universal cutoff energy EABS of 10 keV saves 84% of CPU time whilst showing negligible impact on the calculated results. Disabling the electron transport by imposing an electron energy cutoff of 70 keV (except for the target) saves an extra 8% (losing in the process 1.2% of the photons). The Gaussian energy source (FWHM = 10%, centered at the nominal kVp, homogeneous electron distribution) shows characteristic K-lines in its energy spectrum, not observed experimentally. The average photon energy using an ideal source (mono-energetic, homogeneous electron distribution) was 36.19 ± 0.09 keV, in agreement with the published measured data of 36.2 ± 0.2 keV. The use of a Gaussian-distributed electron source (mono-energetic) increases the penumbra by 50%, which is closer to the measurement results. The maximum discrepancy of the calculated percent depth dose with the corresponding measured values is 4.5% (at the phantom surface, less than 2 % beyond 1 mm depth) and 5% (for the 80% of the field) in the dose profile. Our results agree with the findings published by other authors and are consistent within the expected Type A and B uncertainties. Conclusions: Our results agree with the published measurement results within the reported uncertainties. The observed differences in PDD, dose profiles and photon spectrum come from three main sources of uncertainty: inter-machine variations, measurements and Monte Carlo calculations. It has been observed that a mono-energetic source with a Gaussian electron distribution over the focal spot is a suitable choice to reproduce the experimental data.
关键词: simulation efficiency,Monte Carlo simulation,electronic brachytherapy,surface treatment,dosimetry,x-ray source
更新于2025-09-23 15:21:21
-
Computing uveal melanoma basal diameters: a comparative analysis of several novel techniques with improved accuracy
摘要: Background: We sought to compare the accuracy of standard and novel echographic methods for computing intraocular tumor largest basal diameter (LBD). Design: Multicenter, retrospective cohort study. Subjects: All patients presenting with new diagnosis of uveal melanoma (UM). Methods: Ultrasounds were obtained for all patients, and axial length (AL) was measured for a subset of patients. LBD was calculated as: (1) a single chord measured on B scan ultrasound (one-chord method [1CM]), or (2) by subdividing the basal diameter into two chords, which were summated (two-chord method [2CM]), or (3) by a mathematically-derived formula (MF) based on geometric relationships. The accuracy of each method was then compared, and sensitivity of each technique to factors such as tumor size and AL were analyzed. Main outcome measures: Accuracy, robustness, correctness of predicted plaque size. Results: 116 UMs were analyzed; 1CM-calculated LBD underestimated 2CM-calculated LBD by 7.5% and underestimated LBD by MF by 7.8%; 2CM and MF were tightly correlated (average LBD difference 0.038%). At larger LBDs, 1CM underestimated 2CM and MF by a much greater percentage (p < 0.001). By linear regression, 1CM underestimated LBD compared to 2CM by 0.8% and underestimated LBD compared to MF by 1.2% for every 1-mm LBD increase (p < 0.001 for each). Increasing the number of ultrasound chords beyond two did not significantly impact LBD calculations. For eyes with AL within two standard deviations of the mean, AL did not impact plaque selection using MF. 1CM would have led to selection of an undersized plaque in 41% of cases compared to 2CM and would have misclassified half of all eyes that actually required enucleation. For tumors with LBD < 12 mm, 1CM does not significantly underestimate LBD. Conclusions: Tumor LBD by 1CM is an inaccurate means of determining actual LBD, especially for larger tumors. Using either 2CM or MF is much more accurate, especially for tumors > 12 mm, where a single chord on ultrasound is more likely to lead to incorrect, undersized plaque selection. Our MF can be applied with great accuracy even in cases where the AL of the eye is not measured, using the population average AL (23.7 mm), and the formula LBD = 23.7 sin?1(chord length/23.7).
关键词: Ultrasonography,Plaque brachytherapy,Uveal melanoma,Ocular tumors
更新于2025-09-19 17:15:36
-
Radiology, Lasers, Nanoparticles and Prosthetics || 2. Nuclei and isotopes
摘要: In Chapters 5 to 12 nuclear methods in medicine are discussed either for imaging (scintigraphy, SPECT, PET) or for radiation treatment of cancerous tissues (proton and neutron irradiation, brachytherapy). It is therefore appropriate to first introduce some basic properties of nuclides and isotopes, and in particular of radioactive isotopes which are used in nuclear medicine. This chapter is not intended to replace a textbook on nuclear physics. But it provides sufficient background information for better understanding the subsequent chapters. Handling of radiation in general and application of radioactive isotopes also requires a detailed knowledge of radiation dose and radiation safety, which are topics of Chapter 4.
关键词: scintigraphy,medicine,SPECT,neutron irradiation,PET,brachytherapy,radiation safety,proton irradiation,nuclides,cancerous tissues,isotopes,radioactive isotopes,radiation dose,imaging,nuclear medicine,nuclear methods,radiation treatment
更新于2025-09-19 17:13:59
-
A practical approach to estimating optic disc dose and macula dose without treatment planning in ocular brachytherapy using 125I COMS plaques
摘要: Background: It has been reported that proximity of the tumor to the optic disc and macula, and radiation dose to the critical structures are substantial risk factors for vision loss following plaque brachytherapy. However, there is little dosimetry data published on this. In this study, therefore, the relationship between distance from tumor margin and radiation dose to the optic disc and macula in ocular brachytherapy using 125I Collaborative Ocular Melanoma Study (COMS) plaques was comprehensively investigated. From the information, this study aimed to allow for estimation of optic disc dose and macula dose without treatment planning. Methods: An in-house brachytherapy dose calculation program utilizing the American Association of Physicists in Medicine Task Group-43 U1 formalism with a line source approximation in a homogenous water phantom was developed and validated against three commercial treatment planning systems (TPS). Then optic disc dose and macula dose were calculated as a function of distance from tumor margin for various tumor basal dimensions for seven COMS plaques (from 10 mm to 22 mm in 2 mm increments) loaded with commercially available 125I seeds models (IAI-125A, 2301 and I25.S16). A prescribed dose of 85 Gy for an irradiation time of 168 h was normalized to a central-axis depth of 5 mm. Dose conversion factors for each seed model were obtained by taking ratios of total reference air kerma per seed at various prescription depths (from 1 mm to 10 mm in 1 mm intervals) to that at 5 mm. Results: The in-house program demonstrated relatively similar accuracy to commercial TPS. Optic disc dose and macula dose decreased as distance from tumor margin and tumor basal dimension increased. Dose conversion factors increased with increasing prescription depth. There existed dose variations (<8%) among three 125I seed models. Optic disc dose and macula dose for each COMS plaque and for each seed model are presented in a figure format. Dose conversion factors for each seed model are presented in a tabular format. Conclusions: The data provided in this study would enable clinicians in any clinic using 125I COMS plaques to estimate optic disc dose and macula dose without dose calculations.
关键词: Ocular brachytherapy,Optic disc dose,COMS plaques,125I,Macula dose
更新于2025-09-11 14:15:04
-
Energy dependence of a radiophotoluminescent glass dosimeter for HDR <sup>192</sup> Ir brachytherapy source
摘要: Purpose: We determined correction factors for absorbed dose energy dependence and intrinsic energy dependence for measurements of absorbed dose to water around an 192Ir source using a radiophotoluminescent glass dosimeter (RPLD) calibrated with a 4-MV photon beam. Methods: The ratio of the absorbed dose to the water and the average absorbed dose to RPLD for the 192Ir beam relative to the same ratio in a 4 MV photon beam defines the absorbed dose energy dependence and was determined at distances of 2-10 cm (at intervals of 1 cm) from the 192Ir source in a water phantom using the egs_chamber user code. The RPLD was calibrated to measure absorbed dose to water, Dw, in a 4 MV photon beam using an ionization chamber, which was also used to measure absorbed dose to water, Dw, in a water phantom using the 192Ir source. The detector response (RPL signal per average absorbed dose in the detector) in the 192Ir beam relative to that in the 4 MV photon beam (the relative intrinsic efficiency) was determined experimentally. Finally, the beam quality correction factor was obtained as the quotient between the absorbed dose energy dependence and the relative intrinsic efficiency and corrects for the difference between the beam quality Q0 used at calibration and the beam quality Q used in the measurements. Results: The relative dose ratio of the average absorbed dose to water relative to RPLD ranged from 0.930 to 0.746, and the beam quality correction factor ranged from 0.999 to 0.794 for distances of 2–10 cm from the 192Ir source. The relative detector response to an 192Ir source and the response to a 4-MV photon beam was 0.930, and it did not vary significantly with distance. Conclusions: These results demonstrate that corrections for absorbed dose energy dependence and intrinsic energy dependence are required when using an RPLD to measure with sources different from the reference source providing the primary calibration.
关键词: radiophotoluminescent glass dosimeter,HDR 192Ir brachytherapy source,energy dependence
更新于2025-09-10 09:29:36
-
A method for obtaining three-dimensional measurements of HDR brachytherapy dose distributions using Fricke gel dosimeters and optical computed tomography
摘要: This study aimed to develop a method for performing accurate, high-resolution, three-dimensional (3D) Fricke gel dosimetry measurements of high dose rate (HDR) brachytherapy dose distributions using optical computed tomography (CT). A multi-needle brachytherapy gel phantom was purpose-built to contain four stainless-steel brachytherapy needles and a sample of Fricke Xylenol gel. A Paris-style HDR brachytherapy treatment was planned and delivered to the gel, which was then read out using a novel optical CT scanning method; all the brachytherapy needles were removed prior to scanning and replaced with a refractive index matched fluid. The removal of the stainless-steel needles during pre- and post-irradiation scanning minimised the potential for artefacts caused by missing ray-sum data. Results showed good agreement between measured and calculated doses (within 1%) at all positions greater than 0.1 cm from each needle. This study demonstrated that 3D Fricke gel phantoms may be valuable tools in verifying HDR brachytherapy treatments. The phantom construction and optical CT scanning method proposed in this work has the potential to enable routine quality assurance measurements of complex HDR brachytherapy treatment deliveries via accurate and detailed three-dimensional dose measurements.
关键词: Optical computed tomography,Fricke gel,Brachytherapy
更新于2025-09-10 09:29:36
-
Re-evaluation of the correction factors for the GROVEX
摘要: The GROVEX (GROssVolumige EXtrapolationskammer, large-volume extrapolation chamber) is the primary standard for the dosimetry of low-dose-rate interstitial brachytherapy at the Physikalisch-Technische Bundesanstalt (PTB). In the course of setup modifications and re-measuring of several dimensions, the correction factors have been re-evaluated in this work. The correction factors for scatter and attenuation have been recalculated using the Monte Carlo software package EGSnrc, and a new expression has been found for the divergence correction. The obtained results decrease the measured reference air kerma rate by approximately 0.9% for the representative example of a seed of type Bebig I25.S16C. This lies within the expanded uncertainty (k = 2).
关键词: dosimetry,ionisation chamber,extrapolation chamber,low-dose rate brachytherapy,primary standard
更新于2025-09-09 09:28:46