修车大队一品楼qm论坛51一品茶楼论坛,栖凤楼品茶全国楼凤app软件 ,栖凤阁全国论坛入口,广州百花丛bhc论坛杭州百花坊妃子阁

oe1(光电查) - 科学论文

过滤筛选

出版时间
  • 2018
研究主题
  • electromagnetic pulse
  • cell proliferation
  • cell membrane permeability
  • cell response to electromagnetic stress
  • apoptosis
  • cancer therapy
  • necrosis
应用领域
  • Intelligent Medical Engineering
机构单位
  • V.N. Karazin Kharkiv National University
1643 条数据
?? 中文(中国)
  • Fluorogenic “Photoclick” Labeling and Imaging of DNA with Coumarin-fused Tetrazole in Vivo

    摘要: Photoclickable fluorogenic probes will enable visualization of specific biomolecules with precise spatiotemporal control in their native environment. However, the fluorogenic tagging of DNA with current photocontrolled clickable probes is still challenging. Herein, we demonstrated the fast (19.5 ± 2.5 M-1 s-1) fluorogenic labeling and imaging of DNA in vitro and in vivo with rationally designed coumarin-fused tetrazoles under UV LED photoirradiation. With a water-soluble, nuclear-specific coumarin-fused tetrazole (CTz-SO3), the metabolically synthesized DNA in cultured cells was effectively labeled and visualized, without fixation, via “photoclick” reaction. Moreover, the photoaclickable CTz-SO3 enabled the real-time, spatially controlled imaging of DNA in live zebrafish.

    关键词: DNA,cell imaging,fluorogenic,metabolic labeling,photoclick

    更新于2025-09-04 15:30:14

  • A New Dynamic Model to Predict Transient and Steady State PV Temperatures Taking into Account the Environmental Conditions

    摘要: Photovoltaic (PV) cell and module temperature pro?les, Tc and Tpv, respectively, developed under solar irradiance were predicted and measured both at transient and steady state conditions. The predicted and measured Tc or Tpv covered both a bare c-Si PV cell, by SOLARTEC, at laboratory conditions using a solar light simulator, as well as various c-Si and pc-Si modules (SM55, Bioenergy 195W, Energy Solutions 125W) operating in ?eld conditions. The time constants, τ, of the Tc and Tpv pro?les were determined by the proposed model and calculated using the experimentally obtained pro?les for both the bare PV cell and PV modules. For model validation, the predicted steady state and transient temperature pro?les were compared with experimental ones and also with those generated from other models. The effect of the ambient temperature, Ta, wind speed, vw, and the solar irradiance, IT, on the model performance, as well as of the mounting geometries, was investigated and incorporated in the prediction model. The predicted temperatures had the best matching to the measured ones in comparison to those from six other models. The model developed is applicable to any geographical site and environmental conditions.

    关键词: environmental effects,transient pro?les,steady state,time constant,PV cell temperature,wind velocity

    更新于2025-09-04 15:30:14

  • Effect of Surface Coating of Gold Nanoparticles on Cytotoxicity and Cell Cycle Progression

    摘要: Gold nanoparticles (GNPs) are usually wrapped with biocompatible polymers in biomedical field, however, the effect of biocompatible polymers of gold nanoparticles on cellular responses are still not fully understood. In this study, GNPs with/without polymer wrapping were used as model probes for the investigation of cytotoxicity and cell cycle progression. Our results show that the bovine serum albumin (BSA) coated GNPs (BSA-GNPs) had been transported into lysosomes after endocytosis. The lysosomal accumulation had then led to increased binding between kinesin 5 and microtubules, enhanced microtubule stabilization, and eventually induced G2/M arrest through the regulation of cadherin 1. In contrast, the bare GNPs experienced lysosomal escape, resulting in microtubule damage and G0/G1 arrest through the regulation of proliferating cell nuclear antigen. Overall, our findings showed that both naked and BSA wrapped gold nanoparticles had cytotoxicity, however, they affected cell proliferation via different pathways. This will greatly help us to regulate cell responses for different biomedical applications.

    关键词: surface biocompatibility,microtubule,proteomics,nanoparticle location,cell cycle

    更新于2025-09-04 15:30:14