- 标题
- 摘要
- 关键词
- 实验方案
- 产品
过滤筛选
- 2018
- electromagnetic pulse
- cell proliferation
- cell membrane permeability
- cell response to electromagnetic stress
- apoptosis
- cancer therapy
- necrosis
- Intelligent Medical Engineering
- V.N. Karazin Kharkiv National University
-
Construction of a high-performance photocatalytic fuel cell (PFC) based on plasmonic silver modified Cr-BiOCl nanosheets for simultaneous electricity production and pollutant removal
摘要: The development of high-performance photocatalytic fuel cell (PFC) is seriously hampered by the poor light utilization rate and low charge carriers transfer efficiency. Herein, we have experimentally obtained the plasmonic Ag modified Cr-BiOCl (Cr-BOC/Ag) with high visible light photocatalytic activity and provided direct evidence for the substantially enhanced catalytic activity in metal-semiconductor photocatalysts. The experimental results revealed that the Cr doping and Ag modification could not only extend the photo absorption of BiOCl from the UV to the visible light region but also greatly increase the generation and transfer rate of charge carriers because of its narrowed band gap and the localized surface plasmon resonance (LSPR) effect of metallic Ag. Under visible light irradiation, the Cr-BOC/Ag showed the remarked enhancement on PFC performance when the optimum contents of Cr doping and Ag loading was 14.4% and 4%, respectively. The trapping experiments and multiple characterizations demonstrated that the advantageous combination of Cr doping effect and SPR effect induced by the Ag nanoparticles is responsible for the high generation rate of oxidative species and effective charge carriers transfer. By using RhB as fuel, approximately 75.1% color removal efficiency and 8.38% Coulombic efficiency were obtained under visible light irradiation for 240 min, which are higher than that of MO and TC. And, the Jsc and Voc of Cr-BOC/Ag photoanode were measured to be 0.0073 mA/cm2 and 0.543 V.
关键词: photocatalytic degradation,SPR,BiOCl,coulombic efficiency,visible light,fuel cell
更新于2025-11-14 17:03:37
-
Preparation of CoS<sub>2</sub> counter electrode on Ni sheet for QDSSCs via electrophoretic deposition of ZIF-67
摘要: To prepare counter electrode with low cost and high catalytic activity is a way to improve photovoltaic performance of quantum dot-sensitized solar cells. Here, ZIF-67 thin films are prepared on Ni sheet and FTO conducting glass substrate by electrophoretic deposition at different applied electric fields, and then CoS2/Ni and CoS2/FTO electrodes are obtained by vulcanizing the ZIF-67 thin films using thioacetamide. The prepared CoS2 thin films are characterized by the measurements of scanning electron microscope, X-ray photoelectron spectroscopy, X-ray powder diffraction and Fourier transform infrared spectra. Further, the CoS2/Ni and CoS2/FTO thin films are used as counter electrodes to fabricate quantum dot-sensitized solar cells. Photocurrent-voltage curves, electrochemical impedance spectroscopies and Tafel curves are measured to evaluate their photoelectrochemical properties. The short-circuit photocurrent value of quantum dot-sensitized solar cell based on the CoS2/Ni counter electrode is significantly improved compared with that of the cell based on the CoS2/FTO, and thus the light-to-electric conversion efficiency is increased from 1.95% to 3.24%. The enhancement mechanism of electrocatalytic activity and photovoltaic performance of counter electrode prepared on Ni sheet is analyzed to be less resistance of Ni sheet and higher charge transfer rate between counter electrode and electrolyte.
关键词: Quantum dot-sensitized solar cell,CoS2,Counter electrode,Electrophoretic deposition,Ni sheet
更新于2025-11-14 17:03:37
-
Preparation of high quality perovskite thin film in ambient air using ethylacetate as anti-solvent
摘要: Methylamine lead iodide (CH3NH3PbI3) perovskite thin film solar cell has attracted much attention due to its low cost and high photoelectric conversion efficiency. Preparation of high quality perovskite thin film is the key to obtain high conversion efficiency of solar cells. Here, the pinhole-free CH3NH3PbI3 layer with high coverage and smooth surface is prepared by the one-step solution method in air with ethylacetate as anti-solvent on an electron transport hybrid layer of TiO2 nanoparticles coated porous carbon. The effect of ethylacetate as anti-solvent on the quality of perovskite thin film is studied in detail by comparing with chlorobenzene and ethylether. The high saturation and humidity resistance of ethylacetate in air control the nucleation and growing kinetics of perovskite crystals during the spin coating process, which facilitates the formation of uniform pinhole-free perovskite thin films. The perovskite solar cell based on the prepared high quality thin film achieves the highest conversion efficiency of 17.41% in ambient air with a relative humidity of 35%, which is superior to the perovskite thin films prepared with chlorobenzene and ethylether (conversion efficiency of 10.80% and 10.20%). The higher light-to-electric conversion efficiency is due to high coverage of the pinhole-free perovskite thin film and good contact with the electron transport layer and the hole transport layer.
关键词: Anti-solvent,Perovskite solar cell,Uniform perovskite thin film,Ethylacetate
更新于2025-11-14 17:03:37
-
Graphene quantum dots enhanced ToF-SIMS for single-cell imaging
摘要: Time-of-flight secondary ion mass spectrometry (ToF-SIMS) has shown promising applications in single-cell analysis owing to its high spatial resolution molecular imaging capability. One of the main drawbacks hindering progress in this field is the relatively low ionization efficiency for biological systems. The complex chemical micro-environment in single cells typically causes severe matrix effects, leading to significant signal suppression of biomolecules. In this work, we investigated the signal enhancement effect of graphene quantum dots (GE QDs) in ToF-SIMS analysis. A × 160 magnification of ToF-SIMS signal for amiodarone casted on glass slide was observed by adding amino-functionalized GE QDs (amino-GE QDs), which was significantly higher than adding previously reported signal enhancement materials and hydroxyl group-functionalized GE QDs (hydroxyl-GE QDs). A possible mechanism for GE QD-induced signal enhancement was proposed. Further, effects of amino-GE QDs and hydroxyl-GE QDs on amiodarone-treated breast cancer cells were compared. A significant signal improvement for lipids and amiodarone was achieved using both types of GE QDs, especially for amino-GE QDs. In addition, ToF-SIMS chemical mapping of single cells with better quality was obtained after signal enhancement. Our strategy for effective ToF-SIMS signal enhancement holds great potential for further investigation of drug metabolism pathways and the interactions between the cell and micro-environment.
关键词: Signal enhancement,Single-cell analysis,Graphene quantum dots,Time-of-flight secondary ion mass spectrometry
更新于2025-11-14 15:32:45
-
Codelivery of a cytotoxin and photosensitiser <i>via</i> a liposomal nanocarrier: a novel strategy for light-triggered cytosolic release
摘要: Endosomal entrapment is a key issue for the intracellular delivery of many nano-sized biotherapeutics to their cytosolic or nuclear targets. Photochemical internalisation (PCI) is a novel light-based solution that can be used to trigger the endosomal escape of a range of bioactive agents into the cytosol leading to improved efficacy in pre-clinical and clinical studies. PCI typically depends upon the endolysosomal colocalisation of the bioactive agent with a suitable photosensitiser that is administered separately. In this study we demonstrate that both these components may be combined for codelivery via a novel multifunctional liposomal nanocarrier, with a corresponding increase in the biological efficacy of the encapsulated agent. As proof of concept, we show here that the cytotoxicity of the 30 kDa protein toxin, saporin, in MC28 fibrosarcoma cells is significantly enhanced when delivered via a cell penetrating peptide (CPP)-modified liposome, with the CPP additionally functionalised with a photosensitiser that is targeted to endolysosomal membranes. This innovation opens the way for the efficient delivery of a range of biotherapeutics by the PCI approach, incorporating a clinically proven liposome delivery platform and using bioorthogonal ligation chemistries to append photosensitisers and peptides of choice.
关键词: photosensitiser,codelivery,cell penetrating peptide,photochemical internalisation,saporin,liposomal nanocarrier,endosomal escape
更新于2025-11-14 15:32:45
-
Dendritic PAMAM polymers for strong perovskite intergranular interaction enhancing power conversion efficiency and stability of perovskite solar cells
摘要: The modification of perovskite intergranular perovskite/perovskite interface plays a critical role for power conversion efficiency (PCE) and stability of perovskite solar cells (PSCs). In this work, polyamidoamine (PAMAM) dendrimers are utilized as the dendritic crystallization framework templating the perovskite-crystallizing process. The interactions at the perovskite intergranular interface are considerably strengthened at an ambient environment with dendritic PAMAMs crosslinking the perovskite grains. Consequently, the perovskite morphology is remarkably improved by suppressing the grain/grain-aggregate boundaries for the pinhole removal, which produces a compact, uniform and non-pinhole perovskite film. Finally, the strengthened interfacial interactions dramatically enhance the PCE value of unencapsulated PSCs about 42.6% at an ambient condition. Besides, the unencapsulated PAMAM-modified device can keep 73% of initial PCE value in 400 h while the control device decays to 5% of initial PCE value in 50 h. These results reveal that dendritic polymers might remarkably improve the PCE value and the stability of PSCs. This work provides a new molecular design guideline to effectively regulate the perovskite intergranular interfacial interactions.
关键词: Grain boundary,Interfacial interaction,Intergranular interface,Dendrimer,Perovskite solar cell
更新于2025-11-14 15:27:09
-
Au@Ag@Ag2S heterogeneous plasmonic nanorods for enhanced dye-sensitized solar cell performance
摘要: Au@Ag@Ag2S heterogeneous nanorods (NRs) with two strong plasmonic absorptive bands were developed for boosting the performance of dye-sensitized solar cells, and the remarkably enhanced plasmonic devices were achieved. By doping different concentrations of the Au@Ag@Ag2S NRs within the TiO2 photoanode layers, various enhanced effects of the plasmonic devices were obtained. With the incorporation of the typical Au@Ag@Ag2S NRs (their aspect ratios: 2.7) into the TiO2 photoanodes, the top efficiency of 6.51% of the fabricated plasmonic photovoltaic devices at their doped concentrations of the 2.31% was observed, exhibiting dramatic 40% enhancement than that of the conventional dye-sensitized solar cells (bare device: 4.65%). Benefiting from effective surface plasmon effects of the Au@Ag@Ag2S NRs, the light-harvesting abilities of photoanodes and dyes in devices are dramatically enhanced, which in return boost the whole performance of photovoltaic devices significantly.
关键词: Dye-sensitized solar cell,Nanorod,Power conversion efficiency,Plasmonic effect
更新于2025-11-14 15:27:09
-
Fluorometric determination and intracellular imaging of cysteine by using glutathione capped gold nanoclusters and cerium(III) induced aggregation
摘要: A turn-on fluorometric method is described for selective and sensitive detection of cysteine (Cys). Gold nanoclusters (Au NCs) capped with glutathione (GSH) are used as a fluorescent probe. If Ce3+ ion are present, they will bind to the carboxy groups of the GSH-capped Au NC. This results in aggregation-induced emission enhancement (AIEE), best measured at excitation/emission wavelengths of 360/575 nm. On addition of Cys, which has less steric hindrance compared with GSH and higher affinity for Ce3+, it will bind to Ce3+ through the carboxyl group and link with Au NCs via Au-S bond. Hence, the AIEE is increased and Cys can be quantified via this effect with a linear response in the 0.4–120 μmol L?1 Cys concentration range and a detection limit of 0.15 μmol L?1.
关键词: Au NC,HepG2 cell imaging,Aggregation-induced emission enhancement
更新于2025-11-14 15:26:12
-
Estimation of syringyl units in wood lignins by FT-Raman spectroscopy
摘要: Syringyl (S) lignin content and syringyl-to-guaiacyl (S/G) lignin ratio are important characteristics of wood and lignocellulosic biomass. Although numerous methods are available for estimating S lignin units and S/G ratio, in this work, a new method based on Raman spectroscopy that uses the 370 cm-1 Raman band-area intensity (370-area) was developed. The reliability of the Raman approach for determining S content was first tested by the quantitative analysis of three syringyl lignin models by sampling them, separately, in dioxane and in Avicel. Good linear correlations between the 370 cm-1 intensity and model concentrations were obtained. Next, the %S lignin units in various woods were measured by correlating the 370 cm-1 Raman intensity data with values of S units in lignin determined by three regularly used methods – thioacidolysis, DFRC, and 2D-HSQC NMR. The former two methods take into account only the monomers cleaved from β–O–4-linked lignin units whereas the NMR method reports S content on the whole cell wall lignin. When the 370-area intensities and %S values from the regularly used methods were correlated, good linear correlations were obtained (R2 = 0.767, 0.731, and 0.804, respectively, for the three methods). The correlation with the highest R2, i.e., with the 2D NMR method, is being proposed for estimating S units in wood lignins by Raman spectroscopy as, in principle, both represent of the whole cell wall lignin and not just the portion of lignin that gets cleaved to release monomers. The Raman analysis method is quick, uses minimal harmful chemicals, carried out nondestructively, and is insensitive to the wet or dry state of the sample. The only limitations are that a sample of wood contain at least 30% S and not be significantly fluorescent, although the latter can be mitigated in some cases.
关键词: NMR,Cell wall,%S,Thioacidolysis,S/G ratio,DFRC
更新于2025-11-14 15:16:37
-
Stabilizing silver window electrodes for organic photovoltaics using a mercaptosilane monolayer
摘要: A single layer of the bifunctional molecule 3-mercaptopropyltrimethoxysilane is shown to be remarkably effective at improving the stability of optically thin silver film electrodes towards spontaneous morphological change and oxidation by airborne sulfur. Inclusion of this layer in the novel transparent electrode; WO3 (30 nm) / silver (13 nm) / sol-gel ZnO (27 nm), at the silver / ZnO interface improves the efficiency of organic photovoltaic devices using this electrode by 20%, such that the power conversion efficiency is very close to that achievable using a conventional indium-tin oxide glass electrode; 9.6 % – 0.2 % vs 10.0 % – 0.3 %, with the advantage that the silver electrode has a sheet resistance one third that of the ITO glass ((cid:3)4 Ohms sq-1). The mercaptosilane monolayer is also shown to retard silver diffusion into the ZnO layer whilst imparting a favorable (cid:3)400 meV reduction in electrode work function. In addition to its utility inside the device, this molecular layer is shown to be useful for improving the stability of the silver film electrodes in top-illuminated semi-transparent photovoltaics, since it can be deposited directly onto a completed device from the vapor phase.
关键词: organic photovoltaic,silane,transparent electrode,silver electrode,3-mercaptopropyltrimethoxysilane,Monolayer,work function,organic solar cell
更新于2025-11-03 10:59:25