修车大队一品楼qm论坛51一品茶楼论坛,栖凤楼品茶全国楼凤app软件 ,栖凤阁全国论坛入口,广州百花丛bhc论坛杭州百花坊妃子阁

oe1(光电查) - 科学论文

2 条数据
?? 中文(中国)
  • Calculating the Effective Center Wavelength for Heterodyne Interferometry of an Optical Frequency Comb

    摘要: Heterodyne interferometry based on an optical frequency comb (OFC) is a powerful tool for distance measurement. In this paper, a method to calculate the effective center wavelength of wide spectrum heterodyne interference signal was explored though both simulation and experiment. Results showed that the effective center wavelength is a function of the spectra of the two interfered beams and time-delay of the two overlapped pulses. If the product of the spectra from two arms is symmetric, the effective center wavelength does not change with time-delay of the two pulses. The relative difference between the simulation and experiment was less than 0.06%.

    关键词: center wavelength,optical frequency comb,heterodyne interferometry

    更新于2025-09-23 15:22:29

  • Temperature and Emissivity Inversion Accuracy of Spectral Parameter Changes and Noise of Hyperspectral Thermal Infrared Imaging Spectrometers

    摘要: The emergence of hyperspectral thermal infrared imaging spectrometers makes it possible to retrieve both the land surface temperature (LST) and the land surface emissivity (LSE) simultaneously. However, few articles focus on the problem of how the instrument?s spectral parameters and instrument noise level affect the LST and LSE inversion errors. In terms of instrument development, this article simulated three groups of hyperspectral thermal infrared data with three common spectral parameters and each group of data includes tens of millions of simulated radiances of 1525 emissivity curves with 17 center wavelength shift ratios, 6 full width at half maximum (FWHM) change ratios and 6 noise equivalent differential temperatures (NEDTs) under 15 atmospheric conditions with 6 object temperatures, inverted them by two temperature and emissivity separation methods (ISSTES and ARTEMISS), and analyzed quantitatively the effects of the spectral parameters change and noise of an instrument on the LST and LSE inversion errors. The results show that: (1) center wavelength shifts and noise affect the inversion errors strongly, while FWHM changes affect them weakly; (2) the LST and LSE inversion errors increase with the center wavelength shift ratio in a quadratic function and increase with FWHM change ratio slowly and linearly for both the inversion methods, however they increase with NEDT in an S‐curve for ISSTES while they increase with NEDT slightly and linearly for ARTEMISS. During the design and development of a hyperspectral thermal infrared instrument, it is highly recommended to keep the potential center wavelength shift within 1 band and keep NEDT within 0.1K (corresponding LST error < 1K and LSE error < 0.015) for normal applications and within 0.03K (corresponding LST error < 0.5K and LSE error < 0.01) for better application effect and level.

    关键词: inversion error,hyperspectral thermal infrared,FWHM change,instrument noise,center wavelength shift,temperature and emissivity separation

    更新于2025-09-23 15:21:01