修车大队一品楼qm论坛51一品茶楼论坛,栖凤楼品茶全国楼凤app软件 ,栖凤阁全国论坛入口,广州百花丛bhc论坛杭州百花坊妃子阁

oe1(光电查) - 科学论文

2 条数据
?? 中文(中国)
  • Development of Block Copolymers with Poly(3-hexylthiophene) Segments as Compatibilizers in Non-Fullerene Organic Solar Cells

    摘要: P3HT-segment-based block copolymers have been reported to deliver an effective compatibilizer function in the P3HT:PC61BM bulk-heterojunction (BHJ) system to simultaneously improve performance and stability. However, as limited by the deficient optophysic properties of the P3HT:PC61BM system, the resultant power conversion efficiency (PCE) of compatibilizer-mediated devices is low despite the optimized chemical structures of the P3HT-segment-based block copolymers. To better shed light on such compatibilizer effect, the compatibilizer function of the P3HT-segment-based block copolymers is herein investigated in the emerging non-fullerene acceptor (NFA)-based BHJ systems. A P3HT analogue, poly[(4,4′-bis(2-butyloctoxycarbonyl-[2,2′-bithiophene]-5,5-diyl)-alt-(2,2′-bithiophene-5,5′-diyl)] (PDCBT), is used as the polymer donor since it shares the same backbone as P3HT to afford good compatibility with the P3HT-segment-based block copolymers and it has been proven to deliver a higher PCE than P3HT in the NFA BHJ systems. The P3HT-segment-based block copolymers (P1-P4) are manifested to offer similar compatibilizer function for the PDCBT-based NFA BHJ systems and the importance of their structural design is also revealed. As a result, addition of P4 delivers the largest enhancement in PCE: from 5.30% to 7.11% for the PDCBT:ITIC blend and from 6.21% to 8.04% for the PDCBT:IT-M blend. Moreover, it can also enhance device’s thermal stability, which can maintain 77% of initial PCE after annealing at 85 oC for 120 h (for the PDCBT:ITIC blend), outperforming the pristine binary device (66% preservation). More importantly, all the compatibilizer-mediated device exhibits an improved Voc. Such reduced potential loss can be attributed to the improved interfacial compatibility between the photoactive components, the most important function of a compatibilizer.

    关键词: compatibilizer,poly(3-hexylthiophene) segment,non-fullerene acceptor,organic solar cells,Block copolymers

    更新于2025-09-23 15:19:57

  • Improving the electroactive phase, thermal and dielectric properties of PVDF/graphene oxide composites by using methyl methacrylate-co-glycidyl methacrylate copolymers as compatibilizer

    摘要: In this work, graphene oxide sheets (GO) filled polyvinylidene fluoride (PVDF) nanodielectric composites with methyl methacrylate-co-glycidyl methacrylate copolymer (MG) as compatibilizer were fabricated by solution blend process. MG improved the dispersion of GO and enhanced the interface strength between GO and PVDF matrix. The strong dipolar interaction between MG on the surface of GO and PVDF resulted in the crystal transformation of PVDF from a-phase to b/c-phase and nearly 81% b/c-phase PVDF formed for PVDF/MG@GO7.0 composite. The thermal stability, mechanical property, melting and crystallization behaviors of PVDF/MG@GO composites were improved obviously due to the enhanced interface strength between GO and PVDF matrix with the aid of MG. MG copolymers not only contributed to the uniform dispersion of GO in PVDF, but also prevented the direct connection of GO and effectively inhibited the occurrence of leakage current in composites. Therefore, the dielectric properties of PVDF/MG@GO composites were also enhanced significantly with the addition of MG compared with the PVDF/GO composites, which supported the fact that the dielectric properties of resulted composites could be tailored by using MG copolymer as compatibilizer.

    关键词: thermal properties,PVDF,graphene oxide,compatibilizer,dielectric properties

    更新于2025-09-10 09:29:36