- 标题
- 摘要
- 关键词
- 实验方案
- 产品
过滤筛选
- 2018
- Solar Photovoltaic (SPV)
- Fuzzy Logic Control (FLC)
- MATLAB/Simulink
- Simulation
- Variable Step Size Incremental Conductance (VSS InC)
- Maximum Power Point Tracking (MPPT)
- Electrical Engineering and Automation
- Cochin University College of Engineering
- T.K.M College of Engineering
-
Scandium Molybdate Microstructures with Tunable Phase and Morphology: Microwave Synthesis, Theoretical Calculations, and Photoluminescence Properties
摘要: In this paper, scandium molybdate microstructures have been prepared from solution via a microwave heating method. By controlling the experimental parameters such as molar ratio of reagent and reaction time, scandium molybdates with tunable phase and diverse morphologies including snowflakes, microflowers, microsheets, and branched spindles were obtained. The density of states and surface energies of Sc2Mo3O12 were primarily studied from first-principles calculations. An indirect band gap of 3.56 eV was observed for crystalline Sc2Mo3O12, and the surface energies of various facets were determined to be 0.27–0.91 J/m2. The influence of n(Sc3+):n(Mo7O24 6?) (short for Sc/Mo) molar ratio was systematically investigated and well-characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS), and UV–vis absorption spectroscopy (UV–vis). Results indicate that the Sc/Mo molar ratio has a great effect on the phase and morphology. Diffuse reflection spectra (DRS) revealed the Egap can be readily tuned from 3.69 to 4.16 eV, which is in accordance with the theoretical result. The photoluminescence (PL) properties of Eu3+-doped Sc2Mo3O12 were discussed. This facile synthesis strategy could be extended to the synthesis of other molybdates.
关键词: photoluminescence,morphology control,microwave synthesis,scandium molybdate,density functional theory
更新于2025-09-23 15:23:52
-
Fabrication of Uniaxially Aligned Silica Nanogrooves with Sub-5 nm Periodicity on Centimeter-Scale Si Substrate Using Poly(dimethylsiloxane) Stamp
摘要: The large-area fabrication of aligned nanopatterns with sub-5 nm feature size is crucial for developing nanodevices. Highly ordered nanostructures fabricated through molecular self-assembly exhibit substantial potential for sub-5 nm patterning techniques. Previously, we had reported the fabrication of silica nanogrooves with sub-5 nm periodicity on a Si substrate by using the outermost surfaces of cylindrical surfactant micelles as a template. However, uniaxial alignment of nanogrooves on the entire substrate surface has not yet been achieved. In this study, uniaxially aligned silica nanogrooves were prepared on the entire surface of a Si substrate (2 × 2 cm) by utilizing a poly(dimethylsiloxane) (PDMS) stamp with a striped pattern. The PDMS stamp was placed on the surface of a surfactant thin film precoated on the substrate, although the stamp was not in direct contact with the substrate as in the case of the soft nanoimprint technique. The substrate was then exposed to water vapor, during which cylindrical micelles were aligned in the direction of the guide. Subsequently, by exposing the substrate to an NH3–water vapor mixture, the outermost surfaces of the aligned micelles facing the substrate were replicated with soluble silicate species. The formation of uniaxially aligned nanogrooves on the entire surface of the centimeter-scale substrate was verified by scanning electron microscopy observations and grazing-incidence small-angle X-ray scattering analysis. Thus, herein we provide a simple large-area fabrication method for uniaxially aligned nanopattern with ultra-fine pitch.
关键词: nanoimprint,nanopatterning,alignment control,directed self-assembly,liquid crystals
更新于2025-09-23 15:23:52
-
Interface Engineering of Au(111) for the Growth of 1T′-MoSe <sub/>2</sub>
摘要: Phase-controlled synthesis of two-dimensional transition metal dichalcogenides (TMDCs) is of great interest due to the distinct properties of the different phases. However, it is challenging to prepare metallic phase of group-VI TMDCs due to their metastability. At the monolayer level, interface engineering can be used to stabilize the metastable phase. Here, we demonstrate the selective growth of either single-layer 1H or 1T’-MoSe2 on Au(111) by molecular beam epitaxy; the two phases can be unambiguously distinguished using scanning tunnelling microscopy and spectroscopy. While the growth of 1H-MoSe2 is favourable on pristine Au(111), the growth of 1T’-MoSe2 is promoted by the pre-deposition of Se on Au(111). The selective growth of 1T’-MoSe2 phase on Se-pretreated Au(111) is attributed to Mo intercalation-induced stabilization of the 1T’ phase, which is supported by density functional theory calculations. In addition, 1T’ twin boundaries and 1H-1T’ heterojunctions were observed and found to exhibit enhanced tunnelling conductivity. The substrate pre-treatment approach for phase-controlled epitaxy should be applicable to other group-VI TMDCs grown on Au (111).
关键词: phase control,heterojunction,scanning tunnelling microscopy/spectroscopy,interface engineering,transition metal dichalcogenides,MoSe2
更新于2025-09-23 15:23:52
-
[IEEE 2018 International IEEE Conference and workshop in óbuda on Electrical and Power Engineering (CANDO-EPE) - Budapest, Hungary (2018.11.20-2018.11.21)] 2018 International IEEE Conference and Workshop in óbuda on Electrical and Power Engineering (CANDO-EPE) - Plasma ignition and current control considerations for magnetron sputtering power supplies
摘要: Physical vapor deposition processes require different types of special power supplies for the ignition and sustaining of the plasma inside the sputtering chamber. The paper identifies some requirements for the design of a pulsed DC converter. Experiments have been carried out to identify the current-voltage characteristics of the vacuum chamber with the supply of different gases, and gas mixtures in the usable pressure domain. The vacuum chamber was supplied with voltage and current impulse trains with various parameters in order to acquire relevant data regarding the gas breakdown in pulsed power mode. A power electronic converter topology and control routine has been proposed, which is suitable for plasma ignition and discharge current control. The proof of concept has been demonstrated with the help of the magnetron sputtering chamber supplied by a test circuit.
关键词: current control,power electronic converter,plasma ignition,magnetron sputtering
更新于2025-09-23 15:23:52
-
[IEEE 2018 IEEE International Conference on Computational Electromagnetics (ICCEM) - Chengdu (2018.3.26-2018.3.28)] 2018 IEEE International Conference on Computational Electromagnetics (ICCEM) - A Novel Band-Notched UWB Conformal Antenna Combined with the Method of Circuitry
摘要: A real-time latching controller with consideration of wave force prediction is developed and applied to a heaving point-absorber to maximize its energy absorption. The control scheme is based on the combination of optimal command theory and first order-one variable grey model GM(1,1). By forecasting the wave forces in the near future, the control action at the next instant is deduced. Simulation results show that the energy absorption is increased due to the real-time controller. Therefore, the developed real-time controller is applicable to an industrial wave energy converter (WEC) in random waves. The effect of wave force prediction deviation is also examined. It is shown that the control efficiency is reduced in the presence of prediction deviation.
关键词: wave energy converter,wave force prediction,renewable energy,optimal command theory,energy absorption,real-time latching control
更新于2025-09-23 15:23:52
-
[IEEE 2018 IEEE 7th Data Driven Control and Learning Systems Conference (DDCLS) - Enshi (2018.5.25-2018.5.27)] 2018 IEEE 7th Data Driven Control and Learning Systems Conference (DDCLS) - Quantum Noise Protection via Weak Measurement for Quantum Mixed States
摘要: Due to the interaction with the environment, a quantum state is often affected by the different types of noises which becomes to one of the biggest problems for practical quantum computation. We study the possibility of protecting the mixed state of a quantum system that goes through noise by weak measurements and control operations. The aim is to find the optimal measurement strength and control operations and make the input and output states as close as possible. We show that our scheme can effectively protect arbitrary mixed states against typical types of noise sources: amplitude damping, phase damping and amplitude-phase damping. The optimal measurement and control operators are deduced in different bases of the Bloch sphere to find the best control scheme for each type of noise. The effectiveness of our control scheme is demonstrated by simulation results.
关键词: quantum system control,Open quantum system,optimal noise protection,weak measurement
更新于2025-09-23 15:23:52
-
[IEEE 2018 International Multi-Conference on Industrial Engineering and Modern Technologies (FarEastCon) - Vladivostok, Russia (2018.10.3-2018.10.4)] 2018 International Multi-Conference on Industrial Engineering and Modern Technologies (FarEastCon) - Modeling of the Magneto-Optical Channel of a Fiber-Optic Displacement Sensor
摘要: According to earlier studies conducted by the authors it was found that contactless fiber-optic sensors based on the magneto-optical Faraday effect (FOSF) in epitaxial films of iron garnet can be used for contactless monitoring of the status of control plate valves that regulate the flow of fire and explosion hazardous substances and operate over a wide temperature range. FOSF makes it possible to control the displacement and tilt angle of the valve regulating element (valve plate). However, at the moment there are no sufficiently accurate mathematical models for such FOSF. Studies have shown that the discrepancy between simulation results and experiments can reach 105%. The discrepancy between the results increases significantly when the FOSF is operated in a wide temperature range (from minus 196 to +80 °C). The low accuracy of the FOSF models does not make it possible to develop efficient means of compensating its intrinsic and complementary errors. The existing FOSF models are not sufficiently accurate, since they do not take into account: the distribution of the normal component of the magnetic field strength along the magneto-optical element (MOE) cross-section; the distribution of the optical radiation intensity along the MOE cross-section; optical absorption of the FOSF optical elements. According to the results of research carried out by the authors a set of mathematical models that takes into account the nonuniform distribution of the optical radiation intensity along the MOE cross-section, the nonuniform distribution of normal component of the magnetic field strength along the MOE cross-section, the optical absorption in FOSF optical elements and their temperature dependences was developed. This allowed us to significantly reduce the modelling error. The discrepancy between the results of mathematical modeling and experimental studies of FOSF prototypes does not exceed 7.2%.
关键词: control valve,contactless fiber optic sensor,mathematical model,fire and explosion safety,Faraday effect
更新于2025-09-23 15:23:52
-
[IEEE 2018 IEEE International Instrumentation and Measurement Technology Conference (I2MTC) - Houston, TX (2018.5.14-2018.5.17)] 2018 IEEE International Instrumentation and Measurement Technology Conference (I2MTC) - Multi-core cable fault diagnosis using cluster time-frequency domain reflectometry
摘要: Guaranteeing the integrity and functionality of the control and instrumentation (C&I) cable system is essential in ensuring safe nuclear power plant (NPP) operation. When a fault occurs in a multi-core cable, it not only affects the signals of faulty lines but in fact, disturbs the rest as well due to crosstalk and noise interference. Therefore, this results in C&I signal errors in NPP operation and further leads to a rise in concern regarding the NPP operation. Thus, it is necessary for diagnostic technologies of multi-core C&I cables to classify the faulty line and detect the fault to assure the safety and reliability of NPP operation. We propose a diagnostic method that detects the fault location and faulty line in multi-core C&I cable using a clustering algorithm based on TFDR results. The faulty line detection clustering algorithm uses TFDR cross-correlation and phase synchrony results as input feature data altogether which can detect the faulty line and identify the fault point successfully. The proposed clustering algorithm is verified by experiments with two possible fault scenarios in NPP operation.
关键词: fault diagnosis,reflectometry,control and instrumentation cable,K-means clustering,crosstalk,time-frequency analysis
更新于2025-09-23 15:23:52
-
[IEEE 2018 15th International Conference on Control, Automation, Robotics and Vision (ICARCV) - Singapore, Singapore (2018.11.18-2018.11.21)] 2018 15th International Conference on Control, Automation, Robotics and Vision (ICARCV) - Detection and Compensation of Motion Error for Nanomanipulation Platform in Scanning Electron Microscope
摘要: Nanomanipulation system based on scanning electron microscope(SEM) with good real-time visual feedback and nanoscale observation resolution had high operability in a vacuum working environment. Different nanomanipulation tasks of carbon nanotubes (CNTs) are carried out through the nanomanipulation system in SEM. Nanomanipulation platform existed inherent manufacture errors, installation errors and other errors, and imprecise nanomanipulation system were also time-consuming and laborious for operators. This paper presentes a method of combining the visual feedback and feedforward control to detect and compensate the motion error of the multi-dimensional SmarAct nanomanipulation platform in the nanomanipulation system in SEM. This method reduces the motion error in the X-Y direction and achieved higher operating accuracy. At the different step speed, the motion error in the X direction and Y direction is 135.7nm and 112.9nm respectively. After the feedforward compensation, the motion error in the X direction and Y direction reduces to 61.3nm and 54.1nm respectively.
关键词: feedforward control,Scanning Electron Microscope (SEM),visual feedback,nanomanipulation
更新于2025-09-23 15:23:52
-
Impact of Grid Voltage Feed-Forward Filters on Coupling between DC-Link Voltage and AC Voltage Controllers in Smart PV Solar Systems
摘要: This paper presents a novel study of impact of filters of grid voltage feed-forward signals on the coupling between dc-link voltage and ac voltage controllers in smart photovoltaic (PV) solar systems which are used for voltage control in distribution systems. A comprehensive linearized state space model of a PV system including the dynamics of grid voltage feed-forward filters, dc-link voltage and ac voltage controllers is developed for the first time. This model is validated by electromagnetic transients software PSCAD/EMTDC. This model is used to identify the coupling between dc-link voltage and ac voltage controllers by eigenvalue and participation factor analyses. The impact of time constant of feed-forward filters on this coupling is studied by eigenvalue sensitivity analysis for PV systems with Proportional and Proportional Integral type ac voltage controllers. The range of time constants over which the filters interact with controllers and create instability for systems with different strengths and X/R ratios is identified. Insights are provided on the choice of time constants of grid voltage feed-forward filters for stable system design. The developed state-space model can also be used for impact studies of various other parameters e.g. system strength, X/R ratios, types and gains of controllers, on system stability.
关键词: AC Voltage Control,Smart Inverter,Photovoltaic (PV) System,Reactive Power Control,Control Interaction
更新于2025-09-23 15:22:29