- 标题
- 摘要
- 关键词
- 实验方案
- 产品
-
Nanoconfinement-Induced Giant Electrocaloric Effect in Ferroelectric Polymer Nanowire Array Integrated with Aluminum Oxide Membrane to Exhibit Record Cooling Power Density
摘要: The electrocaloric effect (ECE) offers a unique mechanism to realize environmentally friendly and highly efficient solid-state cooling that completely differs from the conventional vapor-compression refrigeration. Here a new class of hybrid films composed of ferroelectric polymer nanowire array and anodic aluminum oxide (AAO) membrane is reported, which displays pronounced ECE driven by relatively low electric fields. Under confinement and orientation of AAO channels on the crystallization of the polymer, the polymer nanowire array shows substantially enhanced ECE that is about three times that of the corresponding thin films. Simultaneously, the integrated AAO membrane forms thermally conducting channels for the polymer nanowires, enabling the efficient transfer of cooling energy and operation of the EC materials under high frequencies, which are unattainable based on the currently available EC structures. Consequently, the integrated polymer nanowire–AAO hybrid film exhibits the state-of-the-art cooling power density, outperforming the current ferroelectric polymers, ceramics, and composites. This work opens a new route for the development of scalable, high-performance EC materials for next-generation refrigeration.
关键词: electrocaloric effect,nanoconfinement,cooling power density,heat transfer,ferroelectric polymer
更新于2025-09-23 15:22:29
-
Charge and thermal modeling of a semiconductor-based optical refrigerator
摘要: Despite multiple attempts to achieve optical refrigeration in very high (99.5%) external quantum efficiency (EQE) GaAs, no cooling has been observed to date. In this study, we investigate optical refrigeration in GaAs by numerically solving the transient drift-diffusion equation coupled to Poisson’s equation. The charge carrier distributions we obtain, together with the heat diffusion equation, allow us to observe the spatial and temporal evolution of cooling/heating within GaAs. Our results indicate that maximum cooling occurs at a laser intensity different from that which maximizes EQE. An 11-fold difference in intensity exists with a corresponding 6-fold difference in cooling power. We ultimately find that samples suspended in vacuum using a 250 lm SiO2 fiber cool to 88 K, starting from room temperature. These results emphasize the critical importance of choosing an appropriate laser excitation intensity to achieve optical refrigeration along with minimizing the conductive heat load on the refrigerator. Furthermore, results of this study are applicable towards analyzing the optical response of other optoelectronic systems where accurate charge and/or heat diffusion modeling is critical.
关键词: drift-diffusion equation,external quantum efficiency,Poisson’s equation,cooling power,optical refrigeration,heat diffusion equation,GaAs
更新于2025-09-10 09:29:36