- 标题
- 摘要
- 关键词
- 实验方案
- 产品
-
Local Electronic Structure of Molecular Heterojunctions in a Single-Layer 2D Covalent Organic Framework
摘要: The synthesis of a single-layer covalent organic framework (COF) with spatially modulated internal potentials provides new opportunities for manipulating the electronic structure of molecularly defined materials. Here, the fabrication and electronic characterization of COF-420: a single-layer porphyrin-based square-lattice COF containing a periodic array of oriented, type II electronic heterojunctions is reported. In contrast to previous donor–acceptor COFs, COF-420 is constructed from building blocks that yield identical cores upon reticulation, but that are bridged by electrically asymmetric linkers supporting oriented electronic dipoles. Scanning tunneling spectroscopy reveals staggered gap (type II) band alignment between adjacent molecular cores in COF-420, in agreement with first-principles calculations. Hirshfeld charge analysis indicates that dipole fields from oriented imine linkages within COF-420 are the main cause of the staggered electronic structure in this square grid of atomically–precise heterojunctions.
关键词: type II heterojunctions,covalent organic frameworks,density functional theory,scanning tunneling microscopy and spectroscopy,electronic structure
更新于2025-09-09 09:28:46
-
Construction of Ce-MOF@COF hybrid nanostructure: Label-free aptasensor for the ultrasensitive detection of oxytetracycline residues in aqueous solution environments
摘要: Porous organic framework (COF) nanomaterials have drawn increasing attention and showed promising potential in the applications of various fields. Nevertheless, its applications in biosensing or biomedical fields are still in the early stage. In this work, we designed and synthesized a series of nanohybrids of COF and Ce-based metal organic framework (Ce-MOF) for the first time as label-free bioplatforms for a sensitive electrochemical aptasensor to detect oxytetracycline (OTC). A novel kinds of Ce-MOF@COF hybrids were prepared by adding different dosages of COF, into the preparation system of Ce-MOF, for which COF was synthesized using melamine and cyanutic acidmonomers through polycondensation (represented by MCA). Basic characterizations revealed that Ce-MOF@MCA nanohybrids not only remained their orignal crystal and chemical structure and features, such as different Ce species containing in Ce-MOF (Ce3+ and Ce4+), various functional amino-groups of MCA, and individual frameworks, but also showed a large specific surface area and interpenetrated morphologies. As a result, the Ce-MOF@MCA hybrid with high content of MCA exhibited high bioaffinity toward the OTC-targeted aptamer, further leading to the incremental detection effect for OTC detection. Among different hybrid-based aptasensors, the Ce-MOF@MCA-based one with an MCA dosage of 500 mg exhibited the lowest limit of detection at 17.4 fg?mL-1 within a wider linearity of the OTC concentration within 0.1–0.5 ng?mL-1. Additionally, the fabricated aptasensor displayed excellent analytical performance with great reproducibility, high selectivity and stability, and acceptable applicability for detecting OTC in various aqueous solutions, including milk, wastewater, and urine samples. This new Ce-MOF@MCA hybrid will become an excellent aptasensors platform for detecting various analytes, such as antibiotics, heavy metal ions, or cancer markers, and it have shown the promissing application potentials in the fields of biomedicine, food safety and environmental monitoring.
关键词: Ce-based metal organic frameworks,Aptamer sensor,Detection of oxytetracycline,Electrochemical impedance spectroscopy,Covalent organic frameworks
更新于2025-09-04 15:30:14
-
Restriction of Molecular Rotors in Ultrathin Two-Dimensional Covalent Organic Framework Nanosheets for Sensing Signal Amplification
摘要: Covalent organic frameworks (COFs) have emerged as promising crystalline porous materials with well-defined structures, high porosity, tunable topology and functionalities suitable for various applications. However, studies of few-layered ultrathin two-dimensional (2D) COF nanosheets, which may lead to unprecedented properties and applications, are still limited. Herein we report the targeted synthesis of three azine-linked and imine-linked 2D COFs named NUS 30-32 using monomers containing aggregation-induced emission (AIE) rotor-active tetraphenylethylene (TPE) moieties, affording micro- and meso- dual pores in NUS-30 and NUS-32, and triple pores in NUS-31. For the first time, we demonstrate that these isostructural bulk COF powders can be exfoliated into ultrathin 2D nanosheets (2 – 4 nm thickness) by temperature-swing gas exfoliation approach. Compared with TPE monomers and COF model compounds, the AIE characteristic of NUS 30-32 nanosheets is distinctly suppressed due to the covalent restriction of the AIE molecular rotors in the confined 2D frameworks. As a result, the enhancement of conjugated conformations of NUS 30-32 nanosheets with unusual structure relaxation show signal amplification effect in biomolecular recognition of amino acids and small pharmaceutical molecules (L-dopa), exhibiting much higher sensitivity than their stacked bulk powders, TPE monomer, and COF model compound. Moreover, the binding affinity of the COF nanosheets toward amino acids can be controlled by increasing the number of azine moieties in the structure. Density functional theory (DFT) calculations reveal that binding affinity control results from the crucial geometric roles and stronger host-guest binding between azine moieties and amino acids. In addition, we demonstrate that minimal loading of the NUS-30 nanosheets in composite membranes can afford excellent performance for biomolecule detection. Our findings pave a way for the development of functional ultrathin 2D COF nanosheets with precise control over the nature, density, and arrangement of the binding active sites involved in enhanced molecule recognition.
关键词: molecular rotors,Covalent organic frameworks,aggregation-induced emission,biomolecular recognition,signal amplification,two-dimensional nanosheets
更新于2025-09-04 15:30:14