修车大队一品楼qm论坛51一品茶楼论坛,栖凤楼品茶全国楼凤app软件 ,栖凤阁全国论坛入口,广州百花丛bhc论坛杭州百花坊妃子阁

oe1(光电查) - 科学论文

2 条数据
?? 中文(中国)
  • Cyclometalated Ir(III) Complexes Towards Blue-Emissive Dopant for Organic Light-Emitting Diodes: Fundamentals of Photophysics and Designing Strategies

    摘要: The main difficulties hindering development of a deep-blue phosphorescent cyclometalated Ir(III) complex are insufficient colour purity, i.e., failure to achieve ideal Commission Internationale de L’Eclairage (CIE) coordinates of (0.14, 0.09), and insufficient emission efficiency and stability. The latter problem is due to the highly energetic and hot excited states of these complexes, which yield faster decomposition. Therefore, control of the excited-state properties of cyclometalated Ir(III) complexes through systematic chemical modification of the ligands is being extensively investigated, with the aim of developing efficient and stable blue phosphorescent materials. The most common strategies towards achievement of a blue phosphorescent cyclometalated Ir(III) complex involve 1) substitution of electron-withdrawing F atoms at the cyclometalating ligands that stabilise the HOMO orbitals and 2) use of a heteropeltic system with electron-rich ancillary ligands bearing a 5-membered ring heterocycle to increase the LUMO energy level. However, the C–F bonds on the cyclometalating ligands have been found to be inherently unstable during device operation; thus, other types of electron-withdrawing groups (e.g., the cyano, trifluoromethyl, and sulfonyl groups) have been applied. Along with phosphorescence colour tuning to blue, the influence of the ligand structure on the photoluminescence quantum yield (PLQY) is also being intensively investigated. Two major PLQY lowering mechanisms for blue emissive Ir(III) complexes have been identified: 1) the vibronic-coupled non-radiative decay process and 2) crossing from the emissive state to an upper non-emissive 3MC excited state. To enhance the PLQY, mechanism 1) can be suppressed by employing rigid ligand frameworks to restrict intramolecular motion, whereas mechanism 2) can be prevented by destabilising the 3MC state using strong σ donor ligands such as N-heterocyclic carbenes. This review summarises the fundamental photophysics of cyclometalated Ir(III) complexes and surveys design strategies for efficient blue phosphorescent Ir(III) complexes, to provide a guide for future research in this field.

    关键词: blue phosphorescent,3MC excited state,photoluminescence quantum yield,non-radiative decay,N-heterocyclic carbenes,cyclometalated Ir(III) complexes,OLEDs

    更新于2025-09-23 15:21:01

  • The influence of molecular structure on collision radius for optical sensing of molecular oxygen based on cyclometalated Ir( <scp>iii</scp> ) complexes

    摘要: Three triphenylamine (TPA) substituted cyclometalated Ir(III) complexes IrA1, IrA2, and IrA3 based on Ir(ppy)3 were synthesized and applied as phosphorescent probes for the monitoring of molecular oxygen. The phosphorescence intensity of all the Ir(III) complexes in tetrahydrofuran (THF) was gradually quenched with an increase of oxygen concentration. The increase of TPA substituents on the meta-position of 2-phenylpyridine (IrA1-IrA3) gradually improved the oxygen sensitivity of cyclometalated Ir(III) complexes. IrA3 showed the highest oxygen sensitivity in THF with a KappSV of 204.8 bar?1 and a limit of detection (LOD) of 0.27 mbar. The relationship between molecular structure and the collision radiuses (s) of all the Ir(III) complexes has been investigated on the basis of the Demas model and the fundamental expression of luminescence quenching systems by oxygen. The ratio of collision radiuses are sIrA1/sIr(ppy)3 = 1.27 ± 0.05, sIrA2/sIr(ppy)3 = 1.72 ± 0.10, and sIrA3/sIr(ppy)3 = 2.13 ± 0.07, respectively. The introduction and increase of TPA substituents can obviously increase the collision radiuses of cyclometalated Ir(III) complexes which leading to potential oxygen sensitivity. And the incremental effect of collision radiuses caused by the introduction of TPA substituents resulted in outstanding oxygen sensitivity of IrA3. The results demonstrate for the first time evidence between molecular structure and oxygen sensitivity of the emitters for optical sensing.

    关键词: optical sensing,collision radius,molecular oxygen,triphenylamine substituents,cyclometalated Ir(III) complexes

    更新于2025-09-19 17:15:36