- 标题
- 摘要
- 关键词
- 实验方案
- 产品
过滤筛选
- 2019
- charge – discharge energy efficiency
- Lithium-ion battery
- degradation diagnosis
- photovoltaic surplus energy
- working electric vehicle
- Electrical Engineering and Automation
- Ritsumeikan University
-
Binary-phase TiO2 modified Bi2MoO6 crystal for effective removal of antibiotics under visible light illumination
摘要: A series of binary-phase TiO2 modified Bi2MoO6 nanocrystals have been prepared via a solvothermal-calcination process. Trace TiO2 modification can effectively enhance the visible light catalytic activity of Bi2MoO6 to remove the antibiotics in aqueous solution. The obtained TiO2/Bi2MoO6 composites were investigated by some physicochemical techniques like XRD, N2 adsorption, SEM, TEM, UV–vis DRS, Raman, XPS, PL and Photo-electrochemical measurement. The presence of TiO2 nanoparticles (NPs) influenced the crystal growth of Bi2MoO6, decreasing the crystal size of Bi2MoO6 and effectively promoting its specific surface area. Moreover, the conduction band of TiO2 can serve as the electron transfer platform, which largely boosts the effective separation of photocarriers at TiO2/Bi2MoO6 heterojunction interface. With optimal TiO2 content (0.41 wt%), TiO2/Bi2MoO6 exhibited the best photocatalytic performance for different antibiotics degradation, e.g. ciprofloxacin, tetracycline and oxytetracyline hydrochloride under visible light irradiation. Moreover, the mechanism for enhanced photocatalytic performance in ciprofloxacin degradation was illuminated.
关键词: Mechanism,Binary-phase TiO2,Antibiotics,Photocatalytic degradation,Bi2MoO6
更新于2025-09-23 15:22:29
-
In-situ fabrication of Ag/P-g-C3N4 composites with enhanced photocatalytic activity for sulfamethoxazole degradation
摘要: A series of Ag/P-g-C3N4 composites with different Ag content were synthesized for the first time by thermal polymerization combined with photo-deposition method. The composites were characterized by X-ray powder diffraction, field emission scanning electron microscope coupled with energy-dispersive X-ray spectroscopy, transmission electron microscopy, Fourier transform infrared spectroscopy, ultraviolet-visible diffuse reflectance spectra, N2 absorption-desorption and X-ray photoelectron spectroscopy. Ag was successfully dispersed on the surface of P-g-C3N4. The photocatalytic performance of P-g-C3N4 and Ag/P-g-C3N4 was evaluated by degrading sulfamethoxazole (SMX) under visible light irradiation. In the presence of 5% Ag/P-g-C3N4, 100% of SMX was degraded within 20 min. The enhanced photocatalytic activity of Ag/P-g-C3N4 was attributed to the surface plasmon resonance effect of metallic Ag and Schottky barrier formed on the interface between Ag and P-g-C3N4, which could speed up the generation rate of electrons and holes and inhibit the recombination of photogenerated electron-hole pairs. The radical quenching tests indicated that holes and superoxide radicals were the dominant active species involved in SMX degradation. The synthesized materials maintained high catalytic activity after five cycle runs. The concentration and the intermediates during the degradation process were determined by LC-MS/MS, and the tentative degradation pathways of SMX in photocatalytic system were proposed.
关键词: sulfamethoxazole,Ag/P-g-C3N4,intermediate,photocatalytic degradation,degradation pathways
更新于2025-09-23 15:21:21
-
Visible-light degradation of sulfonamides by Z-scheme ZnO/g-C3N4 heterojunctions with amorphous Fe2O3 as electron mediator
摘要: ZnO grafted amorphous Fe2O3 matrix (ZnO/Fe2O3) was coupled with g-C3N4 to synthesize heterojunction photocatalysts with a loosened multilayered structure. The ZnO/Fe2O3/g-C3N4 exhibited enhanced photocatalytic performance in the degradation of sulfamethazine under visible-light irradiation (λ > 420 nm), with an optimum photocatalytic degradation rate approximately 3.0, 2.4 times that of pure g-C3N4 and binary ZnO/g-C3N4. Moreover, the target sulfonamides spiked in actual surface water samples could be efficiently photodegraded by ZnO/Fe2O3/g-C3N4 after 8 h of irradiation, demonstrating its practical potential. An amorphous Fe2O3-mediated Z-scheme mechanism was proposed for the charge transfer at the heterojunction surface, which involved a Fe(III)/Fe(II) oxidation-reduction center that favored the retarded charge recombination and improved photocatalytic activity. Such a mechanism was well supported by the direct detection of surface generated ·O2? and ·OH reactive species. Finally, detailed transformation pathways were proposed based on the photodegradation products identified by QToF-MS analyses. This work provides an illustrative strategy for developing efficient Z-scheme photocatalysts for water purification, by taking advantage of amorphous Fe-based oxides in the semiconductor lattice matching.
关键词: Sulfonamides degradation,Z-scheme mechanism,Electron mediator,ZnO/Fe2O3/g-C3N4,Degradation pathways
更新于2025-09-23 15:21:21
-
Enhancing Electron-hole Utilization of CdS Based on Cucurbiturils Vis Electrostatic Interaction in Visible Light
摘要: We synthesized a novel CdS/Cucurbit[n]urils (CB[n], n=5-10) composites by a simple one-step process. The CdS/CB[5] photo-catalyst exhibits excellent performance. In this context, CdS/CB[5] were studied by different chemical characterization techniques including fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and Brunauer-Emmett-Teller (BET) techniques. FT-IR and XPS indicate that the caged carbonyl port of CB[5] achieves substantial separation of CdS electron-holes. Furthermore, the concentration of hydroxyl radicals was monitored by fluorescence spectroscopy, which confirmed that the Cucurbit[n]urils can effectively enhance the photocatalytic reaction. We have checked the regeneration efficiency of CdS/CB[5], which was still at its higher value even after four cycles of recycling testing. Moreover, a reliable photocatalytic mechanism supported by fluorescent probe for degrading MB aqueous solution in the CdS/CB[5] composite was also described. We anticipate that the study of the mechanism of temporary interaction with holes can have a great impact on photo-catalysis theory.
关键词: methylene blue,CdS/CB[5],photo-catalysis,degradation
更新于2025-09-23 15:21:21
-
Integrated adsorption and photocatalytic degradation of volatile organic compounds (VOCs) using carbon-based nanocomposites: A critical review
摘要: Volatile organic compounds (VOCs) are harmful for human and surrounding ecosystem, and a great number of VOC abatement technologies have been developed during the past few decades. However, the single method has some problems such as high energy consumption, unfriendly environment, and low removal efficiency. Recently, the integration of adsorption and photocatalytic degradation of VOCs is considered as a promising one. Carbon material, with large surface area, high adsorption capacity, and fast electron transfer ability, is widely used in integrated adsorptive-photocatalytic removal of VOCs. It is thus crucial to digest and summarize recent research advances in carbon-based nanocomposites as the adsorbent-photocatalyst for VOC removal. To satisfy this need, this work provides a critical review of the related literature with focuses on: (1) the advantages and disadvantages of various carbon-based nanocomposites for the applications of VOC adsorption and photocatalytic degradation; (2) models and mechanisms of adsorptive-photocatalytic removal of VOCs according to the material properties; and (3) major factors controlling adsorption-photocatalysis processes of VOCs. The review is aimed to establish the "structure-property-application" relationships for the development of innovative carbon-supported nanocomposites and to promote future research on the integrated adsorptive and photocatalytic removal of VOCs.
关键词: Modeling,Photocatalytic degradation,VOC abatement,Carbon-based nanocomposite,Adsorption
更新于2025-09-23 15:21:21
-
AIP Conference Proceedings [Author(s) PROCEEDINGS OF THE 3RD INTERNATIONAL SYMPOSIUM ON CURRENT PROGRESS IN MATHEMATICS AND SCIENCES 2017 (ISCPMS2017) - Bali, Indonesia (26–27 July 2017)] - Preparation and characterization of TiO2/BiVO4 composite: Can this photocatalyst, under visible light, be able to eliminate rhodamine B from water and why?
摘要: Bismuth vanadate (BiVO4) can be composited with titanium dioxide (TiO2) to obtain a photocatalyst that can be activated by visible light. Such photocatalyst may be operated by solar light, principally, a free photon source. Many researchers have been working hard to find a stable, efficient, and low cost photocatalytic systems. In this presentation, we will report our effort to prepare and characterize TiO2/BiVO4 composite, which is responsive under visible light. The TiO2/BiVO4 composite was prepared by co-precipitation method, in which the self-prepared TiO2 nanotubes was immersed in solution containing bismuth (III) and vanadate ions under certain pH. The freshly obtained TiO2/BiVO4 was dried and subjected to a heat treatment, then was characterized by XRD, UV-visible diffuse reflectance spectrophotometer, SEM, and photo-electro-chemical working station. The results showed a crystal phase mixture of TiO2/BiVO4 composite system, which are anatase (2θ of 27.5°, 36.1°, 54.3°) and monoclinic scheelite, bismuth vanadate (2θ of 19°, 29°). The photocurrent evolution under visible light exposure was investigated carefully. The results showed that the composite system is active under visible light, due to visible light absorption by narrow bandgap semiconductor, namely BiVO4. While the heterojunction system in TiO2/BiVO4 composite enhanced the separation of electron and charge, eventually, the electron would flow from the conduction band of BiVO4 to conduction band of TiO2, so the photocurrent will be enhanced. When this composite was being applied to the photoelectrocatalytic reactor system, containing aqueous rhodamine B, the enhancement of photo-catalytic degradation of rhodamine B was also significantly observed. The influence of bias potential applied during photoelectrocatalytic degradation process will be further discussed.
关键词: degradation rhodamine B,TiO2/BiVO4 composite,photocatalyst
更新于2025-09-23 15:21:21
-
Effect of thermal oxidation temperatures on the phase evolution and photocatalytic property of tungsten-doped TiO <sub/>2</sub> thin film
摘要: Tungsten-doped titanium dioxide (W-TiO2) thin films were successfully prepared on glass substrates by sputtering thermally oxidized W-doped titanium films in air. Tungsten-doped titanium films were deposited using a DC and RF magnetron cosputtering system. The effects of annealing treatment and W content on the W-TiO2 film microstructure were investigated. The crystalline structures, morphological features, and photocatalytic activity of the annealed W-TiO2 films were systematically studied by X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), and ultraviolet spectrophotometry. The results indicated that annealing at 550 °C clearly induced the formation of an anatase and rutile phase mixture in the 5.5 at. % W-TiO2 films, which directly affected photocatalytic activity. The W-TiO2 films showed good photocatalytic activity under UV-light irradiation, with a higher rate of methylene blue dye degradation than in the case of undoped TiO2.
关键词: photocatalytic activity,tungsten-doped titanium dioxide,thermal oxidation,methylene blue degradation,thin films
更新于2025-09-23 15:21:21
-
Assembly of graphene on Ag3PO4/AgI for effective degradation of carbamazepine under Visible-light irradiation: Mechanism and degradation pathways
摘要: A highly efficient visible-light-driven photocatalyst Ag3PO4/AgI-Graphene (Ag3PO4/AgI-G) was synthesized through a chemical coprecipitation procedure. Scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS) were performed to study the physicochemical structural of the photocatalysts. The photocatalytic activity of the samples was examined by the carbamazepine (CBZ) degradation under artificial visible light and natural sunlight irradiation. Experimental results indicated that the introduction of low mass content of graphene enhanced the photocatalytic performance of Ag3PO4/AgI, and the photocatalytic degradation efficiency of CBZ over Ag3PO4/AgI-3%G (mass ratio of graphene : Ag3PO4/AgI = 3:100) reached 93.06% within 21 min, which was much higher than that over pure Ag3PO4 (26.92%) and Ag3PO4/AgI (74.38%). UV-vis diffuse reflectance spectra, photoluminescence (PL) spectra, transient photocurrent responses and electrochemical impedance spectra (EIS) of the samples were conducted to verify the high photocatalytic performance of the Ag3PO4/AgI-3%G. In addition, possible photocatalytic degradation pathways of CBZ were proposed based on the analysis of transformation products during the reaction. The reactive species trapping experiments and Electron spin resonance (ESR) analysis demonstrated that h+ and ·O2- were the main active oxidant species responsible for CBZ photodegradation. The photocatalytic degradation mechanism of CBZ over Ag3PO4/AgI-3%G under visible light irradiation was schematically proposed. This study not only provides a new technique for the synthesis of Ag3PO4-based photocatalysts with high photocatalytic activity, but also demonstrates that the Ag3PO4/AgI-3%G composite could be a promising photocatalyst for the treatment of waters containing CBZ.
关键词: Photocatalytic degradation,Carbamazepine,Z-scheme,Graphene,Ag3PO4/AgI,Visible light
更新于2025-09-23 15:21:21
-
Degradation kinetics of anthocyanin and physicochemical changes in fermented turnip juice exposed to pulsed UV light
摘要: In this study, the effects of pulsed UV (PUV) light on the degradation kinetics of anthocyanins and physicochemical properties of turnip juice were investigated. PUV light was applied to turnip juice at 3 different distances (5, 8, 13 cm) from the quartz window of the xenon lamp for 5 different times (5, 15, 30, 45, 60 s). The pH, total acidity (% lactic acid), monomeric anthocyanin content, color density, hue, brightness, and percent color components (yellow, red, and blue) of turnip juice changed significantly after PUV-light treatments at each level. The maximum degradation of anthocyanin after PUV-light treatments was found to be about 63%. The anthocyanin degradation, brightness, yellow and blue color (%) increased, while red color (%) decreased with longer treatment time and shorter distance. The degradation of monomeric anthocyanins in turnip juice exposed to PUV light was described by the Weibull model (R2 0.982–0.998, RMSE 0.087–0.133) more accurately than the first-order kinetics (R2 0.906–0.992, RMSE 0.071–0.192).
关键词: Degradation kinetics of anthocyanin,Pulsed UV light,Physicochemical properties,Turnip juice,Weibull model
更新于2025-09-23 15:21:21
-
CuO/SiO2 modified amine functionalized reduced graphene oxide with enhanced photocatalytic and electrochemical properties
摘要: Graphene, an ideal two dimensional material, has attracted much attention due to its unique structural and physico-chemical properties. Herein, we report synthesis of CuO/SiO2 modified amine functionalized reduced graphene oxide (rGO) and its excellent potentialities in environmental remediation and energy storage application. The structure, purity, functional groups and morphology of as-prepared CuO/SiO2:rGO nanocomposites were characterized by XRD, FTIR, FESEM and TEM. The catalytic activity of the CuO/SiO2:rGO in different ratios was evaluated by degradation of methylene blue (MB) under visible light condition. The CuO/SiO2:rGO (mass ratio 1:3) exhibits high catalytic activity with 99% degradation of 20 ppm MB in 7 min. CuO/SiO2:rGO nanocomposites (1:3) also demonstrate good electrochemical performance with specific capacitance of 235 F g?1, which is about fivefold higher than CuO nanoparticles. The nanocomposite (1:3) also reveals excellent cycling stability at 4 A g?1 for 1000 cycles and the capacitance retention was found to be 95% after 1000 cycles. These results validate that the development of a new class of composite necessitates the proper loading of metal oxide and GO to be used for energy and environmental applications.
关键词: Supercapacitor,Graphene,Methylene Blue,Amine functionalized,Degradation
更新于2025-09-23 15:21:21