修车大队一品楼qm论坛51一品茶楼论坛,栖凤楼品茶全国楼凤app软件 ,栖凤阁全国论坛入口,广州百花丛bhc论坛杭州百花坊妃子阁

oe1(光电查) - 科学论文

过滤筛选

出版时间
  • 2019
研究主题
  • charge – discharge energy efficiency
  • Lithium-ion battery
  • degradation diagnosis
  • photovoltaic surplus energy
  • working electric vehicle
应用领域
  • Electrical Engineering and Automation
机构单位
  • Ritsumeikan University
493 条数据
?? 中文(中国)
  • Degradation of methylparaben using BiOI-hydrogel composites activated peroxymonosulfate under visible light irradiation

    摘要: A novel hydrogel photocatalyst (p(HEA-APTM)-BiOI) was synthesized by irradiation polymerization and chemical precipitation method, while employed as peroxymonosulfate (PMS) activator to enhance methylparaben (MP) degradation. The structure, morphology and physicochemical properties of the prepared p(HEA-APTM)-BiOI were characterized by XRD, XPS, SEM, TEM, FTIR and BET. The experimental results revealed that the MP catalytic degradation by p(HEA-APTM)-BiOI activated PMS can achieve the best performance under the visible light irradiation. In addition, the parameters including the molar radio of [PMS]/[MP], initial pH, Cl- and HCO3- were also investigated in detail. It was worth noting that p(HEA-APTM)-BiOI also effectively eliminated MP in the absence of visible light. Based on the quenching experiment, 1O2, h+ and ?O2- were determined as the dominant active species contributing to the catalytic oxidation process in the p(HEA-APTM)-BiOI/PMS/Vis system, and the possible degradation mechanism was also elaborated. Eventually, the possible pathways of MP degradation were deduced from several intermediates identified by HPLC-MS.

    关键词: Methylparaben,peroxymonosulfate,degradation mechanism,visible light,BiOI-hydrogel

    更新于2025-09-23 15:21:21

  • Fabrication of hierarchical sheet-on-sheet WO3/g-C3N4 composites with enhanced photocatalytic activity

    摘要: Novel hierarchical sheet-on-sheet WO3/g-C3N4 (WOCN) composites were successfully fabricated by simple calcination method using acid-treated SrWO4/g-C3N4 as precursors. The morphological observation showed that WO3 nanosheets were closely anchored on the surface of g-C3N4 nanosheets to construct a hierarchical nanostructure. The as-synthesized WOCN composites exhibited a significantly higher photocatalytic activity towards the photocatalytic degradation of rhodamine B (RhB) compared to pristine g-C3N4 and WO3 under simulated sunlight irradiation. The optimum photocatalytic activity of the WOCN at a WO3 mass content of 34.6% was 6.5 and 3.0 times higher than that of pristine WO3 and g-C3N4, respectively. The enhanced photocatalytic activities of WOCN composites were attributed to the formation of hierarchical heterostructure, which provided larger specific surface area, better visible-light absorption capability, reduced the recombination of photogenerated electron-hole pairs and enhanced separation efficiency of charge carriers. A Z-scheme photocatalytic mechanism was proposed according to active species trapping experiments.

    关键词: Graphitic carbon nitride,Photocatalytic degradation,Tungsten oxide,Hierarchical heterostructure,Strontium tungstate

    更新于2025-09-23 15:21:21

  • Composition analysis of Ta <sub/>3</sub> N <sub/>5</sub> /W <sub/>18</sub> O <sub/>49</sub> nanocomposite through XPS

    摘要: A characterization of a nanocomposite material consisting of Ta3N5 nanoparticles and W18O49 nanowires is presented. The material is of interest for photocatalytic applications, with a focus on pollution reduction through the photodegradation of dye waste; under white light illumination, the combination of Ta3N5 and W18O49 yielded an enhanced rate of dye degradation relative to Ta3N5 particles alone. The facile method of synthesis is thought to be a promising route for both upscale and commercial utilization of the material. X-ray photoelectron spectroscopy revealed a core–shell composite structure with W18O49 present as an overlayer on Ta3N5; the analyzed spectra for the C 1s, O 1s, Ta 4f, N 1s, W 4f, and Na 1s regions are reported. It should be noted that due to differential charging of the underlying Ta3N5 component relative to the W18O49 shell, an additional uncompensated voltage shift may exist in the Ta 4f and N 1s spectra.

    关键词: x-ray photoelectron spectroscopy,XPS,dye degradation,W18O49,nanowires,composite,Ta3N5,photocatalysis

    更新于2025-09-23 15:21:21

  • Zinc Oxide Nanoparticles Synthesized by Suaeda japonica Makino and Their Photocatalytic Degradation of Methylene Blue

    摘要: Green chemistry gained special attention for the environmental safety. In addition, green synthesized plant based nanoparticles for the degradation of industrial pollutant dye also received special focuses. Thus, photocatalytic activity of nanosized zinc oxide (Sj-ZnONps) synthesized by a simple co-precipitation method using sodium hydroxide, zinc nitrate, and Suaeda japonica extract as starting materials was carried out. The reaction was implemented in comparatively low temperature (50oC) without further calcination. The absorption spectrum demonstrated an extinction peak at ~362 nm, which is characteristic to the ZnO nanoparticles. Field-emission transmission electron microscope revealed smaller agglomeration of hexagonal Sj-ZnONps (~100 nm). X-ray diffraction patterns exposed polycrystalline ZnO with hexagonal wurtzite structure. The self-assembly of Sj-ZnONps was achieved due to the capping of phytoconstituents present in extract as evident from Fourier-transform infrared spectroscopy analysis. The photocatalytic degradation of Sj-ZnONps was estimated in reduction of methylene blue (MB). The reaction mixtures comprising of MB, S. japonica extract and Sj-ZnONps had the most significant decrease of MB by 54 %. In conclusion, the Sj-ZnONps can be used as a photocatalyst for decomposition of organic pollutions present in water.

    关键词: Photocatalytic degradation,Green synthesis,Suaeda japonica Makino,Methylene blue,Zinc oxide nanoparticles

    更新于2025-09-23 15:21:21

  • TiOF2/TiO2 composite nanosheets: Effect of hydrothermal synthesis temperature on physicochemical properties and photocatalytic activity

    摘要: TiOF 2 /TiO 2 nanosheets were prepared by hydrothermal processing of Ti(OBu) 4 in the presence of aqueous HF solution. The effect of different hydrothermal synthesis temperatures (140, 160, 180, and 200 °C) on the compositions, morphologies, crystal sizes, and photoelectric properties of the resulting samples was studied via various characterization methods. The photocatalytic properties of the samples were studied through photodegradation of organic pollutants such as rhodamine B (RhB), methyl orange (MO), and cipro?oxacin hydrochloride (CIP-HCl). TiOF 2 /TiO 2 nanosheets prepared by hydrothermal synthesis at 160 °C exhibited the highest photocatalytic activity among these samples, and it is much more active than P25 (a benchmark photocatalyst) and TiO 2 prepared hydrothermally (without adding aqueous HF solution during the hydrothermal synthesis). A possible photocatalytic mechanism is discussed.

    关键词: Nanosheet,TiO 2,Photocatalyst,TiOF 2,Degradation

    更新于2025-09-23 15:21:21

  • Photocatalytic degradation of azophloxine on porous La2Ti2O7 prepared by sol-gel method

    摘要: Cetyltrimethyl ammonium bromide (CTAB) was used in a sol-gel route to synthesize porous lanthanum titanate. The materials are composed of perovskite La2Ti2O7 in monoclinic system. The addition of CTAB does not cause phase transformation, but leads to a slight decreasing tendency of La2Ti2O7 crystallite size. Both the pore volume and pore size distribution range are enlarged after using CTAB. The sample obtained with 4 g CTAB has the maximum BET specific surface area of 42.4 m2/g. When the amount of CTAB is less than 4 g, the increase in photocatalytic degradation efficiency is almost in linear relationship to the amount of CTAB. The reaction rate constants are 0.0032, 0.0116 and 0.0237 min-1 on the La2Ti2O7 samples obtained using 0, 2 and 4 g CTAB. The functional groups in azophloxine molecule are decomposed during photocatalytic oxidation with extending irradiation time.

    关键词: cetyltrimethyl ammonium bromide,azophloxine,degradation,photocatalysis,lanthanum titanate

    更新于2025-09-23 15:21:21

  • Photocatalytic removal of diclofenac by Ti doped BiOI microspheres under visible light irradiation: Kinetics, mechanism, and pathways

    摘要: BiOI microspheres doped with different amounts of Ti were fabricated and used to remove diclofenac (DCF) from water under visible light irradiation. The fabricated photocatalysts were well characterized. Ti doped BiOI microspheres were found to exhibit higher photocatalytic activity towards DCF under visible light compared with BiOI. Ti doping broadened the band gap of BiOI, which leads to a more negative conduction band edge and a higher reducing activity of photo-generated electrons, thus facilitates ·O2? production during photocatalysis. Among all the fabricated Ti doped BiOI microspheres, TB450 exhibited the highest DCF photocatalytic removal efficiency. Specifically, 99.2% of DCF (C0 = 10 mg L?1) was removed by TB450 (250 mg L?1) at pH 5 within 90 min under visible light irradiation. Scavenger experiments indicated that active species including h+, ·O2? and H2O2 played important roles in the photocatalytic process. The degradation pathway of DCF was elucidated by theoretical density functional theory (DFT) and by-products identification through liquid chromatograph mass spectrometer (LC-MS) analysis. DCF degradation pathway mainly included hydroxylation and the cleavage of C\N bond. DFT calculation can well interpret the degradation mechanism and the sites of DCF molecule with high radical-attack Fukui index (f0) exhibit high reactivity. Acidic condition was found to facilitate the DCF photocatalytic removal. Due to strong photo-stability, Ti doped BiOI microspheres contained good visible-light-driven (VLD) photocatalytic removal efficiency for DCF in the fourth consecutive reused cycle. Ti doped BiOI microspheres can be employed as a cost-effective and high-efficient material to efficiently degrade emerging contaminants (e.g., pharmaceutical) from wastewaters under visible light conditions.

    关键词: Ti doped BiOI microspheres,Photocatalysis,Diclofenac,Reuse,Degradation pathway,DFT calculation

    更新于2025-09-23 15:21:21

  • Effects of material degradation on electrical and optical characteristics of surface dielectric barrier discharge

    摘要: In this paper, screen-printed electrodes are asymmetrically fabricated on three different dielectrics (multi-layered polyimide, quartz, and alumina). Supplied with AC power, sustainable surface dielectric barrier discharge (SDBD) plasma is generated in atmospheric pressure. During plasma processing, different changes of material degradation and discharge images are observed. The corresponding electrical and optical characteristics are investigated by optical emission spectra (OES) and Lissajous figure analysis, respectively. It is found that both dielectric degradation and electrode erosion occur on the surface of the polyimide based SDBD device, while there is only electrode erosion for the quartz and alumina based devices, which results in different changes of electrical characteristics. OES calculated results show that with an increase of discharge aging time, electron temperature increases for the polyimide based SDBD device and decreases for quartz and alumina based SDBD devices, while all the gas temperatures of three dielectrics increase with the aging time. Furthermore, compared to vibrational temperature and gas temperature, the distribution of electron temperature is more suitable for evaluating the changes in discharge uniformity during plasma processing.

    关键词: electrical characteristics,plasma processing,optical characteristics,surface dielectric barrier discharge,material degradation

    更新于2025-09-23 15:21:21

  • Effective Removal of Tetracycline by Using Bio-Templated Synthesis of TiO2/Fe3O4 Heterojunctions as a UV–Fenton Catalyst

    摘要: Novel maize-straw-templated TiO2/Fe3O4 hierarchical porous composites were synthesized by high-temperature calcination followed by a hydrothermal process. The composites were demonstrated to be efficient heterogeneous catalysts for the UV–Fenton-like degradation of TC. The results show that the as-prepared TiO2/Fe3O4 catalysts retain the original pore morphology of the maize-straw material, and a large amount of Fe3O4 particles are attached to the TiO2 surfaces. The as-prepared TiO2/Fe3O4 heterojunctions have abundant interfacial boundaries, which greatly improve the migration of photoexcited charges across different components. Consequently, in the UV–Fenton system, the TiO2/Fe3O4 catalysts exhibit significant activity towards the degradation of TC (50?mg/L) in a wide pH range. In particular, a maximum mineralization and TC removal of 98% is achieved within 60?min at pH 7.0, which is much higher than that of traditional Fe3O4-based UV–Fenton (81%) and TiO2 photocatalysis (23%). The enhanced degradation and mineralization of tetracycline is attributed to the efficient reduction of Fe3+ to Fe2+ by photo-generated electrons from the TiO2 skeleton of the TiO2/Fe3O4 heterojunction.

    关键词: UV–Fenton,Biotemplated,TiO2/Fe3O4 heterojunction,Tetracycline degradation

    更新于2025-09-23 15:21:21

  • Unraveling the impact of hole transport materials on photostability of perovskite films and p-i-n solar cells

    摘要: We investigated the impact of a series of hole transport layer materials (HTLs) such as PEDOT:PSS, NiOx, PTAA, and PTA on photostability of thin films and solar cells based on MAPbI3, Cs0.15FA0.85PbI3, Cs0.1MA0.15FA0.75PbI3, Cs0.1MA0.15FA0.75Pb(Br0.15I0.85)3, and Cs0.15FA0.85Pb(Br0.15I0.85)3 complex lead halides. Mixed halide perovskites showed reduced photostability in comparison with similar iodide-only compositions. In particular, we observed light-induced recrystallization of all perovskite films except MAPbI3 with the strongest effects revealed for Br-containing systems. Moreover, halide and β FAPbI3 phase segregations were also observed mostly in mixed-halide systems. Interestingly, coating perovskite films with PCBM layer spectacularly suppressed light-induced growth of crystalline domains as well as segregation of Br-rich and I-rich phases or β FAPbI3. We strongly believe that all three effects are promoted by the light-induced formation of surface defects, which are healed by adjacent PCBM coating. While comparing different hole-transport materials, we found that NiOx and PEDOT:PSS are the least suitable HTLs due to their interfacial (photo)chemical interactions with perovskite absorbers. On the contrary, polyarylamine-type HTLs PTA and PTAA form rather stable interfaces, which makes them the best candidates for durable p-i-n perovskite solar cells. Indeed, multilayered ITO/PTA(A)/MAPbI3/PCBM stacks revealed no aging effects within 1000 h of continuous light soaking and delivered stable and high power conversion efficiencies in solar cells. The obtained results suggest that using polyarylamine-type HTLs and simple single-phase perovskite compositions paves a way for designing stable and efficient perovskite solar cells.

    关键词: stable HTL/perovskite interface,interface-induced degradation,light-induced perovskite crystallization,photo-induced degradation,p-i-n perovskite solar cells

    更新于2025-09-23 15:21:01