修车大队一品楼qm论坛51一品茶楼论坛,栖凤楼品茶全国楼凤app软件 ,栖凤阁全国论坛入口,广州百花丛bhc论坛杭州百花坊妃子阁

oe1(光电查) - 科学论文

过滤筛选

出版时间
  • 2019
研究主题
  • charge – discharge energy efficiency
  • Lithium-ion battery
  • degradation diagnosis
  • photovoltaic surplus energy
  • working electric vehicle
应用领域
  • Electrical Engineering and Automation
机构单位
  • Ritsumeikan University
493 条数据
?? 中文(中国)
  • Multi-resolution Image Fusion in Remote Sensing () || Image Fusion: Model Based Approach with Degradation Estimation

    摘要: Recently, many researchers have attempted to solve the problem of multi-resolution image fusion by using model based approaches, with emphasis on improving the fused image quality and reducing color distortion [273, 121]. They model the low resolution (LR) MS image as a blurred and noisy version of its ideal high resolution (HR) fused image. Solving the problem of fusion by the model based approach is desirable since the aliasing present due to undersampling of the MS image can be taken care of while modelling. Fusion using the interpolation of MS images and edge-preserving ?lters as given in Chapter 3 do not consider the effect of aliasing which is due to undersampling of MS images. The aliasing in the acquired image causes distortion and, hence, there exists degradation in the LR MS image. In this chapter, we propose a model based approach in which a learning based method is used to obtain the required degradation matrix that accounts for aliasing. Using the proposed model, the ?nal solution is obtained by considering the model as an inverse problem. The proposed approach uses sub-sampled as well as non sub-sampled contourlet transform based learning and a Markov random ?eld (MRF) prior for regularizing the solution.

    关键词: model based approach,multi-resolution image fusion,degradation estimation,contourlet transform,Markov random field

    更新于2025-09-04 15:30:14

  • Multi-resolution Image Fusion in Remote Sensing () || Image Fusion: Application to Super-resolution of Natural Images

    摘要: Increasing the spatial resolution of a given test image is of interest to the image processing community since the enhanced resolution of the image has better details when compared to the corresponding low resolution image. Super-resolution (SR) is an algorithmic approach in which a high spatial resolution image is obtained by using single/multiple low resolution observations or by using a database of LR–HR pairs. The linear image formation model discussed for image fusion in Chapter 4 is extended here to obtain an SR image for a given LR test observation. In the image fusion problem, the available Pan image was used in obtaining a high resolution fused image. Similar to the fusion problem, SR is also concerned with the enhancement of spatial resolution. However, we do not have a high resolution image such as a Pan image as an additional observation. Hence, we make use of a database of LR–HR pairs in order to obtain the SR for the given LR observation. Here, we use contourlet based learning to obtain the initial SR estimate which is then used in obtaining the degradation as well as the MRF parameter. Similar to the fusion problem discussed in Chapter 4, an MAP–MRF framework is used to obtain the final SR image.

    关键词: image processing,degradation estimation,MAP–MRF framework,Super-resolution,contourlet transform

    更新于2025-09-04 15:30:14

  • Synthesis and Characterization of Tio2/C Composite for Photocatalytic Degradation of Dyes.

    摘要: Titanium dioxide TiO2 nanoparticles have moderate catalytic activity due to its wide band-gap and high rate of electron-hole recombination [1]. The TiO2 electrical conductivity poor is improved by mixing with other materials. Therefore, TiO2 based nanocomposites have been synthesized to increase the photocatalytic activity, as well as their structural characteristics and electrochemical performance, using dopants like carbon, nitrogen, sulfur and others. TiO2/C composite has been proven to be a promising photocatalyst for pollutants, due to C-doping, morphology, structure and mixed phases [1]. Carbon precursors are reported to synthesize TiO2/C, such as: glucose, oleic acid, carbon nanofiber, graphene oxide, activated carbon, carbon nanotubes, graphite, resorcinol and formaldehyde. Dyes used for industries, are significant sources of environmental pollution, because they are non-biodegradable [2]. Methyl orange (MO) and methyl blue (MB) have been used to help determine the activity of the photocatalyst [3]. The reagents used were: anatase powder 99.8% (metals basis), sucrose (99.5%), H2SO4 (65% wt), distilled water, MO (MW=327.33g/mol) and MB (MW=319.85g/mol). TiO2/C composites were synthesized via infiltrating sucrose into anatase. In a typical synthesis, anatase (A) and sucrose (S) with molar ratio of A/S=6, sulfuric acid and distilled water were mixed completely. The mixture was then put in a drying oven, treated at 100°C for 6h and subsequently at 160°C for 6h. The resulting brown precursor powder was carbonized in a tubular furnace at 800°C for 1h in argon atmosphere. Rigaku D-Max 2200 difractometer was used to obtain XRD patterns using Cu Kα radiation. The surface morphology and the crystalline phases were examined with Field Emission Transmission Electron Microscope, JEM 2010F JEOL. The photocatalytic activity was tested for degradation of MB and MO with an initial concentration of 20 ppm, using 0 and 0.34 g/L of TiO2/C, under radiant flux provided by 175 W UV. The MB and MO concentrations were measured by UV–vis spectroscopy (Aiglet-Vis spectrophotometer). The XRD patterns of TiO2/C composite is shown in Fig. 2, in which all the characteristic diffraction peaks of the TiO2/C composite can be respectively indexed with planes of anatase phase of TiO2 (JCPDS No. 21-1272). Moreover, a small peak at 11.5° is observed, characteristic of weakly ordered graphitic microstructure, indicating the trace amount of graphite in the composite [4]. No significant peaks of carbon or rutile are observed after the precursor powders are heat treated under argon atmosphere, which suggesting its amorphous nature and confirmed the high purity of the TiO2/C composite [5], because impurities have been reported due to the transformation from anatase to rutile phase [1]. The broad diffraction peaks indicate the sample’s nanocrystalline nature. Fig. 3a shows the micrographs of TEM bright field of powders; it is clearly seen that the TiO2/C composite powders have mostly spherical morphology. Further, it can be estimated that the particle size of samples is of the microscale order with grain size of the range of 20-30nm. Fig. 3b shows the atomic structure and the crystallinity of TiO2/C composite through HRTEM. The insert image shown in Figure 3b give the corresponding Fast Fourier Transform (FFT) pattern of the anatase; this pattern displays (101) and (200) planes from the interplanar spacing of 0.352 and 0.189 nm respectively (JCPDS No. 21-1272). The results of XRD concurred with the electron diffraction pattern created by FFT from HRTEM. The degradation percentage for MO and MB were 99.95 and 99.99 % at 15 min on TiO2/C whereas 86 and 81 % at 90 min for MB and MO in the absence of catalyst is illustrated in Fig. 5. TiO2/C composite was synthetized using anatase and sucrose by obtaining a precursor powder at low temperature (160°C), which is carbonized at 800°C in argon atmosphere. The XRD analysis reveals that the TiO2/C composite is a phase anatase unique structure with high crystallization, which had no impurities, but it showed a trace amount of graphite in the composite. The TiO2/C composite were found to be efficient catalyst for the photodegradation of MB and MO dyes under UV irradiation. The reaction was found to follow pseudo-first order kinetics described it well. This method could be extended to synthesize a variety of other composites for photocatalytic degradation of dyes.

    关键词: anatase,TiO2/C composite,dyes,photocatalytic degradation,sucrose

    更新于2025-09-04 15:30:14