- 标题
- 摘要
- 关键词
- 实验方案
- 产品
-
Microstructural interpretation of charge transport dynamics of chemically derived ZnCo2O4 under mechanical milling
摘要: In this work, milling effect on chemically synthesized nanocrystalline Zinc Cobaltite (ZnCo2O4) has been investigated and we report how the structural and electrical properties vary with the milling span. Phase pure ZnCo2O4 has been successfully synthesized via simple and cost-effective co-precipitation method and then it has been milled for one, four and eight hours respectively. XRD confirms formation of single phase cubic structure for both milled and unmilled nano-powders. Different microstructural parameters has been estimated from Rietveld analysis, which shows particle size reduction from ~29.64 nm for unmilled sample to ~18.13 nm for eight hour milled sample. TGA-DSC curve of as prepared sample shows good temperature stability that helps to estimate the appropriate sintering temperature for the samples. TEM analysis also gives values of grain size in agreement with Reitveld analysis. Frequency dependent ac conductivity curve obeys universal Jonscher power law and temperature dependence of frequency exponent is explained by small polaron transaction. Comparable activation energies from hopping mechanism and relaxation process indicates similar transport mechanism. Superimposed scaling spectra obeys TTSP principle. AC conductivity increases with frequency as a result of hopping of the charge carriers. Smaller particles with reduced strain gives enhanced conductivity as well as enhanced value of hopping frequency. This further suggests creation of excess charge carriers in milled samples. Cole-Cole plot shows non-Debye type behavior of the samples. The dielectric loss factor increases with lowering of particle size since smaller grains contributes to faster charge conduction.
关键词: TGA-DSC,Mechanical milling,Electrical characterisation,dielectric loss factor,Microstructure
更新于2025-09-23 15:22:29