- 标题
- 摘要
- 关键词
- 实验方案
- 产品
-
A Performance Comparison of Centralized and Distributed Spectrum Management Techniques in Elastic Optical Networks
摘要: Elastic optical networks (EONs) have emerged to provide higher spectrum efficiency than traditional Dense Wavelength-Division-Multiplexing (DWDM) by utilizing enabling technologies such as flexible spectrum grid, Orthogonal Frequency Division Multiplexing (OFDM), and distance adaptive rate and modulation. The choice of the control-plane is an important consideration when deploying any new technology, especially in optical networks. This paper considers generic distributed and centralized spectrum assignment policies in conjunction with the accompanying connection set-up signaling protocols in EONs. A network simulator for Generalized Multiprotocol Label Switching (GMPLS) was developed with Forward Reservation Protocol and Backward Reservation Protocol signaling methods. These signaling techniques are used with the First Fit (FF) and Random Fit (RF) Routing and Spectrum Allocation (RSA) algorithms. The paper discusses control elements (central and distributed architectures) decisions under busy hour and normal network conditions and presents a comprehensive performance analysis of key performance metrics such as connection success rate, connection establishment time, and capacity requirement.
关键词: distributed control,signaling protocols,GMPLS,routing and spectrum allocation,centralized control,spectrum allocation,Elastic optical networks
更新于2025-09-23 15:22:29
-
Consensus Based Distributed Control for Photovoltaic-Battery Units in a DC Microgrid
摘要: In this paper, a distributed cooperative control scheme, considering the State of Charge (SoC) balance and power limits of Battery Storage Units (BSUs) in the consensus protocol, is proposed to achieve average bus voltage consensus in a DC microgrid with photovoltaics (PVs). The state variable defined in the consensus protocol enables all BSUs to charge or discharge together without introducing circulating currents among BSUs. Furthermore, by incorporating power limits of BSUs in the defined state variable, power violation of the BSUs can be prevented. The consensus-based distributed control only utilizes neighbor-to-neighbor communication to realize the global consensus and thus avoids the single point of failure compared to the conventional centralized control. Simulation and experimental results demonstrate the efficacy of the proposed method in an islanded DC microgrid under different testing scenarios.
关键词: microgrid,PV,energy storage,distributed control,Consensus
更新于2025-09-23 15:21:01
-
[IEEE 2018 Power Systems Computation Conference (PSCC) - Dublin, Ireland (2018.6.11-2018.6.15)] 2018 Power Systems Computation Conference (PSCC) - An ADMM-Based Coordination and Control Strategy for PV and Storage to Dispatch Stochastic Prosumers: Theory and Experimental Validation
摘要: This paper describes a two-layer control and coordination framework for distributed energy resources. The lower layer is a real-time model predictive control (MPC) executed at 10 s resolution to achieve fine tuning of a given energy set-point. The upper layer is a slower MPC coordination mechanism based on distributed optimization, and solved with the alternating direction method of multipliers (ADMM) at 5 minutes resolution. It is needed to coordinate the power flow among the controllable resources such that enough power is available in real-time to achieve a pre-established energy trajectory in the long term. Although the formulation is generic, it is developed for the case of a battery system and a curtailable PV facility to dispatch stochastic prosumption according to a trajectory at 5 minutes resolution established the day before the operation. The proposed method is experimentally validated in a real-life setup to dispatch the operation of a building with rooftop PV generation (i.e., 101 kW average load, 350 kW peak demand, 82 kW peak PV generation) by controlling a 560 kWh/720 kVA battery and a 13 kW peak curtailable PV facility.
关键词: storage,Photovoltaic (PV),Distributed control
更新于2025-09-23 15:21:01
-
[IEEE 2018 IEEE Energy Conversion Congress and Exposition (ECCE) - Portland, OR, USA (2018.9.23-2018.9.27)] 2018 IEEE Energy Conversion Congress and Exposition (ECCE) - A Novel Differential Power Processing Architecture for a Partially Shaded PV String Using Distributed Control
摘要: This paper proposes a differential power processing (DPP) architecture applied to a series PV string which enables each PV element to operate at its local maximum power point (MPP) while processing only a small portion of its total generated power through the module integrated converters (MICs). The current processed through each converter is the difference between the local PV element MPP current and the local PV string current. This feature allows for a reduced current stress on the MIC components relative to the most common DPP topology. Thus, a higher system efficiency is realized at a reduced cost. A state space model of the proposed system is derived, and a comparison analysis is carried out with respect to the conventional DPP architectures. Additionally, a modular and compact design is proposed for a large number of PV panels in a series PV string. A hardware prototype is designed and built for 3 PV panels connected in series to validate the proposed architectures effectiveness and experimentally demonstrate its robustness. The modularity of the system is also tested to ensure low current and voltage stress on the MICs.
关键词: Distributed Control,maximum power point tracking (MPPT),Differential Power Processing,DC-DC Converters,Photovoltaic (PV) String,Partial Shading
更新于2025-09-23 15:19:57
-
[IEEE 2019 IEEE 46th Photovoltaic Specialists Conference (PVSC) - Chicago, IL, USA (2019.6.16-2019.6.21)] 2019 IEEE 46th Photovoltaic Specialists Conference (PVSC) - Solar Forecasting for Low Voltage Network Operations: Selected Case Studies in Australia
摘要: We introduce a distributed cooperative framework and method for Bayesian estimation and control in decentralized agent networks. Our framework combines joint estimation of time-varying global and local states with information-seeking control optimizing the behavior of the agents. It is suited to nonlinear and non-Gaussian problems and, in particular, to location-aware networks. For cooperative estimation, a combination of belief propagation message passing and consensus is used. For cooperative control, the negative posterior joint entropy of all states is maximized via a gradient ascent. The estimation layer provides the control layer with probabilistic information in the form of sample representations of probability distributions. Simulation results demonstrate intelligent behavior of the agents and excellent estimation performance for a simultaneous self-localization and target tracking problem. In a cooperative localization scenario with only one anchor, mobile agents can localize themselves after a short time with an accuracy that is higher than the accuracy of the performed distance measurements.
关键词: consensus,Agent networks,distributed estimation,belief propagation,information-seeking control,sensor networks,distributed target tracking,sequential estimation,cooperative localization,distributed control,message passing
更新于2025-09-19 17:13:59