- 标题
- 摘要
- 关键词
- 实验方案
- 产品
-
Effect of tantalum content on the structural properties and sensing performance of YbTaxOy electrolyte-insulator-semiconductor pH sensors
摘要: In this work, we developed YbTaxOy sensing membranes displaying super-Nernstian pH-sensitivity for use in electrolyte-insulator-semiconductor (EIS) pH sensors. We examined the effect of tantalum content on the structural properties and sensing characteristics of the YbTaxOy sensing membranes deposited through reactive co-sputtering onto Si substrates. X-ray diffraction, atomic force microscopy, secondary ion mass spectrometry, and X-ray photoelectron spectroscopy revealed the structural, morphological, depth, and chemical features, respectively, of these YbTaxOy films prepared under various Ta plasma power conditions (from 80 to 160 W). Among the tested systems, the YbTaxOy EIS device prepared at the 120 W condition exhibited the super-Nernstian sensitivity (70.24 mV/pH), the lowest hysteresis voltage (1.5 mV), and the lowest drift rate (0.26 mV/h). Presumably, this condition optimized the stoichiometry of YbTaO4 in the film and its surface roughness while reducing the crystal defect and suppressing silicate formation at the YbTaxOy-Si interface. The super-Nernstian pH-sensitivity may be attributed to the incorporation of Ta ions in the Yb2O3 forming a YbTaO4 stoichiometric film, enhancing a change in oxidation state of Yb from trivalent ion to bivalent ion and thus transferring one electron to two protons in the redox reaction.
关键词: Electrolyte-insulator-semiconductor (EIS),Sensing characteristics,Plasma power,pH sensitivity,YbTaxOy
更新于2025-09-23 15:22:29
-
Electrolyte-Insulator-Semiconductor pH Sensors with Arrayed Patterns Manufactured by Nano Imprint Technology
摘要: This work focuses on the sensing properties of electrolyte-insulator-semiconductor (EIS) pH sensors with arrayed patterns manufactured by integrating nano imprint technology (NIL) and CMOS process. The arrayed patterns, made of line and square at about ~200–400nm with a width/space ratio of about ~1/1-1/2, were fabricated by NIL; followed by the manufacturing of the EIS sensors. The patterns were studied by atomic force microscopy (AFM) and scanning electron microscopy (SEM). The sensors, with arrayed patterns, all exhibited higher sensitivity, lower hysteresis, and lower drift properties than the single one did. The effects of arrayed patterns (square or line) and pattern density on the sensing area were also investigated. With this approach, the sensors can be fabricated for future high performance biochemical sensing applications.
关键词: sensitivity,drift,arrayed patterns,nano imprint technology,pH sensors,electrolyte-insulator-semiconductor,hysteresis
更新于2025-09-23 15:21:01