修车大队一品楼qm论坛51一品茶楼论坛,栖凤楼品茶全国楼凤app软件 ,栖凤阁全国论坛入口,广州百花丛bhc论坛杭州百花坊妃子阁

oe1(光电查) - 科学论文

4 条数据
?? 中文(中国)
  • Study of (AgxCu1a??x)2ZnSn(S,Se)4 monograins synthesized by molten salt method for solar cell applications

    摘要: The open circuit voltage (VOC) deficit of Cu2ZnSn(S,Se)4 (CZTSSe) kesterite solar cells is higher than that of the closely related Cu(InGa)Se2 solar cells. One of the most promising strategies to overcome the large VOC deficit of kesterite solar cells is by reducing the recombination losses through appropriate cation substitution. In fact, replacing totally or partially Zn or Cu by an element with larger covalent radius one can significantly reduce the concentration of I–II antisite defects in the bulk. In this study, an investigation of the impact of partial substitution of Cu by Ag in CZTSSe solid solution monograins is presented. A detailed photoluminescence study is conducted on Ag-incorporated CZTSSe monograins and a radiative recombination model is proposed. The composition and structural quality of the monograins in dependence of the added Ag amount are characterized using Energy Dispersive X-ray Spectroscopy and X-Ray Diffraction method, respectively. The Ag-incorporated CZTSSe monograin solar cells are characterized by temperature dependent current-voltage and electron beam induced current methods. It was found, that low Ag contents (x ≤ 0.02) in CZTSSe lead to higher solar cell device efficiencies.

    关键词: Copper zinc tin sulfur selenide,Monograins,Electron beam induced current,Photoluminescence,Kesterite,Cations substituation

    更新于2025-11-21 10:59:37

  • The Effect of Crystallographic Orientation and Nanoscale Surface Morphology on <i>Poly</i> -Si/SiO <i> <sub/>x</sub></i> Contacts for Silicon Solar Cells

    摘要: High-efficiency crystalline silicon (Si) solar cells require textured surfaces for efficient light trapping. However, passivation of a textured surface to reduce carrier recombination is difficult. Here, we relate the electrical properties of cells fabricated on a KOH-etched, random pyramidal textured Si surface to the nanostructure of the passivated contact and the textured surface morphology. The effects of both microscopic pyramidal morphology and nanoscale surface roughness on passivated contacts consisting of a polycrystalline Si (poly-Si) deposited on top of an ultrathin, 1.5–2.2 nm, SiOx layer is investigated. Using atomic force microscopy we show a pyramid face, which is predominantly a Si(111) plane to be significantly rougher than a polished Si(111) surface. This roughness results in a nonuniform SiOx layer as determined by transmission electron microscopy (TEM) of a poly-Si/SiOx contact. Our device measurements also show an overall more resistive, and hence thicker SiOx layer over the pyramidal surface as compared to a polished Si(111) surface, which we relate to increased roughness. Using electron-beam-induced current measurements of poly-Si/SiOx contacts we further show that the SiOx layer near the pyramid valleys is preferentially more conducting, and hence likely thinner than over pyramid tips, edges and faces. Hence, both the microscopic pyramidal morphology and nanoscale roughness lead to nonuniform SiOx layer, thus leading to poor poly-Si/SiOx contact passivation. Finally, we report >21% efficient and ≥80% fill-factor front/back poly-Si/SiOx solar cells on both single-side and double-side textured wafers without the use of transparent conductive oxide layers and show that the poorer contact passivation on a textured surface is limited to boron-doped poly-Si/SiOx contacts.

    关键词: passivated contact,tunneling,silicon oxide,electron beam induced current,silicon solar cell,surface orientation,atomic force microscopy

    更新于2025-09-19 17:13:59

  • European Microscopy Congress 2016: Proceedings || SEM based electro-optical characterization of core-shell LEDs and simulation of imaging including CL and EBIC excitation inside ensembles

    摘要: Three dimensional (3D) nano- and microstructures (NAMs) are attracting a lot of attention and are discussed regarding several applications, especially in optoelectronics and sensors. For example GaN based 3D light emitting diodes (LEDs) with a core-shell geometry are supposed to have substantial advantages over conventional planar LEDs: The active area along the sidewalls of hexagonal GaN pillars can considerably be increased by high aspect ratios - leading to a lower current density inside the InGaN quantum well (QW) at the same operation current per substrate area. [1] Thus related methods are requested for characterization of local electro-optical properties with a high spatial resolution on single structures as well as in ensembles. Usually, electron microscopy is employed to investigate the geometry and properties of such 3D-NAMs and for mapping of vertical features by an SEM a certain sample tilt (e.g. about 30°) is needed. Investigation of single 3D-LEDs by electron beam induced current (EBIC) using an SEM based manipulator setup proves the presence of a pn-junction and doping type of the core and shell, while cathodoluminescence (CL) gives an insight to the optical properties of the QW [2]. But in contrast to SEM on planar regions the interactions of the electron probe are significantly affected by the 3D geometry and the surrounding of the NAMs. In ensembles of 3D-NAMs a certain portion of incident electrons are scattered into neighbor structures and conventional SEM signals (SE, BSE, CL, X-ray emission) are partly shadowed. This interaction is affecting the SEM imaging contrast and the probed signal also includes contributions which are not related to the material properties at the electron beam spot. As such parasitic signals are generated quite close to the original region of the interaction most (global) SEM detectors cannot separate them from the original source. In particular scattering events occur in an enlarged volume of the sample (of the substrate and NAMs) leading to a reduced excitation density and parasitic effects, e.g. this causes a significant contribution of defect related yellow luminescence (YL) We present results of InGaN/GaN core-shell LEDs obtained with an FE-SEM which is equipped with SE, In-Beam SE, low-kV BSE, EBIC and monochromatic CL detection as well as a piezo controlled manipulator setup, see Figure 1. A modified parabolic collection mirror enables measuring luminescence from planar samples up to 4’’ in a tilted view up to 30°. For a quantitative interpretation of CL and EBIC measurement values and image contrasts, the physical modeling of SEM images and spatially resolved energy transfer by a probe spot is necessary. This is performed using the simulation program MCSEM [3]. It models the different stages of image formation and generates SEM images of complex NAM shapes using e.g. GaN as model material. Aspects of the simulation are the electron probe formation, a 3D model of the specimen structure, the interaction of electron probe and solid state by means of scattering trajectories, the emission of secondary electrons, and different types of electron detectors, see Figure 2 and Figure 3. An insight to CL and EBIC imaging is gained by evaluating the scattering energy deposited in a distinct volume inside the NAMs as an imaging signal - this is related to the generation rate of electron-hole pairs inside the respective volume of the semiconductor. Consent to the experiments this simulation reveals an edge contrast and shadowing of signals by the ensemble as well as scattering of primary electrons inside the ensemble of 3D-NAMs. A quantitative comparison is possible by the absorbed current (EBAC). Artefacts of the EBIC are also demonstrated by the simulation, in particular edge contrast by a reduced generation rate and parasitic signals by scattering from neighbor structures.

    关键词: EBIC,cathodoluminescence,electron beam induced current,SEM simulation,core-shell LED

    更新于2025-09-11 14:15:04

  • From EBIC images to qualitative minority carrier diffusion length maps

    摘要: A novel method is presented with the aim to perform minority carrier di?usion length map on cross-sectional samples. The method is based on one Electron-Beam Induced Current (EBIC) acquisition and on the analyze of the EBIC signal slope variation on each scanned points. This method is applied on a pinned photodiode array realized on a low doped silicon epitaxy, and the electron di?usion length map which is extracted is in good accordance with our expectation taking into account the doping distribution of the device. A TCAD simulation also con?rms quantitatively the measured di?usion length map. Advantages and drawbacks of this method are discussed in this study.

    关键词: CMOS image sensors,CMOS,Scanning electron microscopy (SEM),Simulation,Electron-beam-induced current (EBIC),Deep submicron process,Solid-state image sensor,Semiconductor material measurements

    更新于2025-09-10 09:29:36