修车大队一品楼qm论坛51一品茶楼论坛,栖凤楼品茶全国楼凤app软件 ,栖凤阁全国论坛入口,广州百花丛bhc论坛杭州百花坊妃子阁

oe1(光电查) - 科学论文

4 条数据
?? 中文(中国)
  • [IEEE 2019 IEEE 46th Photovoltaic Specialists Conference (PVSC) - Chicago, IL, USA (2019.6.16-2019.6.21)] 2019 IEEE 46th Photovoltaic Specialists Conference (PVSC) - Solar forecasting as an enablement tool for the distribution system operator (DSO)

    摘要: We examine the behavior of three classes of evolutionary multiobjective optimization (EMO) algorithms on many-objective knapsack problems. They are Pareto dominance-based, scalarizing function-based, and hypervolume-based algorithms. NSGA-II, MOEA/D, SMS-EMOA, and HypE are examined using knapsack problems with 2–10 objectives. Our test problems are generated by randomly specifying coefficients (i.e., profits) in objectives. We also generate other test problems by combining two objectives to create a dependent or correlated objective. Experimental results on randomly generated many-objective knapsack problems are consistent with well-known performance deterioration of Pareto dominance-based algorithms. That is, NSGA-II is outperformed by the other algorithms. However, it is also shown that NSGA-II outperforms the other algorithms when objectives are highly correlated. MOEA/D shows totally different search behavior depending on the choice of a scalarizing function and its parameter value. Some MOEA/D variants work very well only on two-objective problems while others work well on many-objective problems with 4–10 objectives. We also obtain other interesting observations such as the performance improvement by similar parent recombination and the necessity of diversity improvement for many-objective knapsack problems.

    关键词: Evolutionary many-objective optimization,evolutionary multiobjective optimization (EMO),many-objective problems

    更新于2025-09-23 15:19:57

  • [IEEE 2019 IEEE 8th International Conference on Advanced Optoelectronics and Lasers (CAOL) - Sozopol, Bulgaria (2019.9.6-2019.9.8)] 2019 IEEE 8th International Conference on Advanced Optoelectronics and Lasers (CAOL) - Monte Carlo method for analyzing the propagation of radiation in the skin layers containing blood in photoplethysmography

    摘要: In evolutionary multiobjective optimization, it is very important to be able to visualize approximations of the Pareto front (called approximation sets) that are found by multi-objective evolutionary algorithms. While scatter plots can be used for visualizing 2-D and 3-D approximation sets, more advanced approaches are needed to handle four or more objectives. This paper presents a comprehensive review of the existing visualization methods used in evolutionary multiobjective optimization, showing their outcomes on two novel 4-D benchmark approximation sets. In addition, a visualization method that uses prosection (projection of a section) to visualize 4-D approximation sets is proposed. The method reproduces the shape, range, and distribution of vectors in the observed approximation sets well and can handle multiple large approximation sets while being robust and computationally inexpensive. Even more importantly, for some vectors, the visualization with prosections preserves the Pareto dominance relation and relative closeness to reference points. The method is analyzed theoretically and demonstrated on several approximation sets.

    关键词: projection,evolutionary multiobjective optimization,Pareto front,evolutionary algorithm,visualization,Approximation set

    更新于2025-09-23 15:19:57

  • [IEEE 2019 IEEE 46th Photovoltaic Specialists Conference (PVSC) - Chicago, IL, USA (2019.6.16-2019.6.21)] 2019 IEEE 46th Photovoltaic Specialists Conference (PVSC) - Epitaxial GaAsP/Si Tandem Solar Cells with Integrated Light Trapping

    摘要: It is known that Pareto dominance has its own weaknesses as the selection criterion in evolutionary multiobjective optimization. Algorithms based on Pareto criterion (PC) can suffer from problems such as slow convergence to the optimal front and inferior performance on problems with many objectives. Non-Pareto criterion (NPC), such as decomposition-based criterion and indicator-based criterion, has already shown promising results in this regard, but its high selection pressure may lead to the algorithm to prefer some specific areas of the problem’s Pareto front, especially when the front is highly irregular. In this paper, we propose a bi-criterion evolution (BCE) framework of the PC and NPC, which attempts to make use of their strengths and compensates for each other’s weaknesses. The proposed framework consists of two parts: PC evolution and NPC evolution. The two parts work collaboratively, with an abundant exchange of information to facilitate each other’s evolution. Specifically, the NPC evolution leads the PC evolution forward and the PC evolution compensates the possible diversity loss of the NPC evolution. The proposed framework keeps the freedom on the implementation of the NPC evolution part, thus making it applicable for any non-Pareto-based algorithm. In the PC evolution, two operations, population maintenance and individual exploration, are presented. The former is to maintain a set of representative nondominated individuals and the latter is to explore some promising areas that are undeveloped (or not well-developed) in the NPC evolution. Experimental results have shown the effectiveness of the proposed framework. The BCE works well on seven groups of 42 test problems with various characteristics, including those in which Pareto-based algorithms or non-Pareto-based algorithms struggle.

    关键词: Pareto criterion (PC),evolutionary multiobjective optimization (EMO),non-Pareto criterion (NPC),Bi-criterion evolution (BCE)

    更新于2025-09-23 15:19:57

  • [IEEE 2019 IEEE 46th Photovoltaic Specialists Conference (PVSC) - Chicago, IL, USA (2019.6.16-2019.6.21)] 2019 IEEE 46th Photovoltaic Specialists Conference (PVSC) - Investigations of Site-Specific, Long Term Average Albedo Determination for Accurate Bifacial System Energy Modeling

    摘要: It is known that Pareto dominance has its own weaknesses as the selection criterion in evolutionary multiobjective optimization. Algorithms based on Pareto criterion (PC) can suffer from problems such as slow convergence to the optimal front and inferior performance on problems with many objectives. Non-Pareto criterion (NPC), such as decomposition-based criterion and indicator-based criterion, has already shown promising results in this regard, but its high selection pressure may lead to the algorithm to prefer some specific areas of the problem’s Pareto front, especially when the front is highly irregular. In this paper, we propose a bi-criterion evolution (BCE) framework of the PC and NPC, which attempts to make use of their strengths and compensates for each other’s weaknesses. The proposed framework consists of two parts: PC evolution and NPC evolution. The two parts work collaboratively, with an abundant exchange of information to facilitate each other’s evolution. Specifically, the NPC evolution leads the PC evolution forward and the PC evolution compensates the possible diversity loss of the NPC evolution. The proposed framework keeps the freedom on the implementation of the NPC evolution part, thus making it applicable for any non-Pareto-based algorithm. In the PC evolution, two operations, population maintenance and individual exploration, are presented. The former is to maintain a set of representative nondominated individuals and the latter is to explore some promising areas that are undeveloped (or not well-developed) in the NPC evolution. Experimental results have shown the effectiveness of the proposed framework. The BCE works well on seven groups of 42 test problems with various characteristics, including those in which Pareto-based algorithms or non-Pareto-based algorithms struggle.

    关键词: Pareto criterion (PC),Bi-criterion evolution (BCE),non-Pareto criterion (NPC),evolutionary multiobjective optimization (EMO)

    更新于2025-09-19 17:13:59