- 标题
- 摘要
- 关键词
- 实验方案
- 产品
-
Enhanced Methane Sensing Properties of WO3 Nanosheets with Dominant Exposed (200) Facet via Loading of SnO2 Nanoparticles
摘要: Methane detection is extremely difficult, especially at low temperatures, due to its high chemical stability. Here, WO3 nanosheets loaded with SnO2 nanoparticles with a particle size of about 2 nm were prepared by simple impregnation and subsequent calcination using SnO2 and WO3·H2O as precursors. The response of SnO2-loaded WO3 nanosheet composites to methane is about 1.4 times higher than that of pure WO3 at the low optimum operating temperature (90 °C). Satisfying repeatability and long-term stability are ensured. The dominant exposed (200) crystal plane of WO3 nanosheets has a good balance between easy oxygen chemisorption and high reactivity at the dangling bonds of W atoms, beneficial for gas-sensing properties. Moreover, the formation of a n–n type heterojunction at the SnO2-WO3 interface and additionally the increase of specific surface area and defect density via SnO2 loading enhance the response further. Therefore, the SnO2-WO3 composite is promising for the development of sensor devices to methane.
关键词: methane sensing,SnO2-loaded WO3 nanosheets,exposed (200) facet,heterojunction
更新于2025-11-14 17:03:37
-
A Photoresponsive Rutile TiO <sub/>2</sub> Heterojunction with Enhanced Electron-Hole Separation for High-Performance Hydrogen Evolution
摘要: Rutile titanium dioxide (TiO2) is a promising photocatalyst due to its high thermodynamic stability and few intragrain defects. However, it has not yet achieved photocatalytic activity comparable to that of anatase TiO2 owing to its higher recombination rate of electron–hole pairs. To effectively separate the electron–hole pairs in rutile TiO2, a facet heterojunction (FH) structure to prolong the lifetime of the photogenerated electrons is proposed. Ultrathin TiO2 nanosheets with different facets are coated in situ onto TiO2 nanorod (NR) substrates, where FHs are built among the nanosheets as well as between the nanosheets and NR substrates. The as-prepared rutile TiO2, with an FH structure (FH-TiO2), serves as an effective photocatalyst for water splitting. More than 45 and 18 times higher photogenerated current density and H2 production rate, respectively, are obtained compared to those of pure rutile TiO2 NRs. Moreover, FH-TiO2 delivers a 0.566 mmol g?1 h?1 H2 production rate even in pure water. This study offers important insights into the rational design of rutile TiO2 structures for highly efficient photocatalytic reactions.
关键词: charge separation,rutile TiO2,facet heterojunction,water splitting
更新于2025-09-23 15:22:29