- 标题
- 摘要
- 关键词
- 实验方案
- 产品
-
European Microscopy Congress 2016: Proceedings || FIB patterning for position-controlled nanowire growth
摘要: Semiconductor nanowire (NW) based heterostructures are a promising material system for next generation optoelectronic devices, such as flexible solar cells and light emitting diodes [1]. Their reduced contact area and surface strain relaxation allow for epitaxial growth on lattice-mismatched substrates, a key advantage for integration of different III-V semiconductors with existing silicon-based technology. Position-controlled NWs can be grown in ordered arrays on Si to improve uniformity and device integration. This is commonly performed by using a SiO2 thin film as a mask. Patterning of circular holes in the mask (Fig. 1(a)) allows for site-specific NW growth in predefined patterns and positions. To date, this is performed using lithography techniques such as electron beam lithography or nanoimprint lithography [2]. Important processing parameters include oxide thickness, hole diameter and pattern pitch, requiring several steps to be optimized in order to achieve a high yield of uniform NWs [3]. Additionally, the catalytic particle is rarely centered in the hole, leading to undesirable asymmetry in the NW cross-sections [4]. In this work, the parameter space for direct patterning of NW growth substrates by focused ion beam (FIB) is explored (Fig. 1). Self-catalyzed GaAsSb NWs were grown using molecular beam epitaxy (MBE) on a FIB patterned Si(111) substrate with 40 nm thermal oxide, where hole size, dose and Ga-beam overlap were systematically varied (Fig. 1(a-c)). It is expected that a higher degree of flexibility and control can be attained using FIB compared to the conventionally used resist-based patterning techniques. In addition, patterning by FIB leads to Ga implantation in both Si and SiO2, which could positively affect the self-catalyzed NW growth and the properties of the NW-substrate system in a unique way. After MBE growth, three distinct growth regimes can be recognized, present in all arrays (Fig. 1(d-e)): The smallest (10 nm pattern) diameter row features a high yield (≤ 80%) of straight NWs. As the hole diameter increases there is initially a transition to more parasitic crystal growth and finally multiple (2-5) NWs grow within each hole. As the dose increases between arrays in each column, the patterned diameter for these transitions decreases proportionally. The results demonstrate that using FIB the parameter space can be mapped out efficiently within a single growth session and that growth can be tuned between aligned single NWs, 2D parasitic crystals and multiple NWs per hole. Transmission electron microscopy and electrical testing of single NWs directly on the growth substrate [5] will be used to refine the structural analysis and study the electrical properties of these NWs. It is expected that in addition to the flexibility of FIB patterning, III-V NWs grown on FIB-patterned Si will exhibit novel properties due to the implantation of Ga and the altered NW-substrate interface.
关键词: self-catalyzed,nanowires,focused ion beam,nanostructuring,GaAsSb
更新于2025-09-11 14:15:04
-
Direct writing of single germanium vacancy center arrays in diamond
摘要: Single photon emitters in solid-state systems with superior optical properties are of fundamental importance for they are building block candidates of many quantum optics applications. The ideal qubit will have a bright narrow band emission (i.e. high Debye Waller (DW) factor) and an access to optically read out and manipulate its spin states. Numerous candidates have been studied in diamond including the nitrogen vacancy (NV) center and more recently the silicon vacancy (SiV) center. The advantage of the SiV is its high DW factor, with nearly 80% of its emission is within its zero phonon line (ZPL). But its coherence time is limited by the narrow ground state splitting (~40 GHz) which favors single-phonon absorption from the lower branch to the upper one. This necessitates the search for an alternative system with a larger ground state splitting to suppress the phonon-mediated processes. Color centers in diamond are promising solid-state qubits for scalable quantum photonics applications. Amongst many defects, those with inversion symmetry are of an interest due to their promising optical properties. In this work, we demonstrate a maskless implantation of an array of bright, single germanium-vacancy (GeV) centers in diamond. Employing the direct focused ion beam technique, single GeV emitters are engineered with the spatial accuracy of tens of nanometers. The single GeV creation ratio reaches as high as 53% with the dose of 200 Ge+ ions per spot. The presented fabrication method is promising for future nanofabrication of integrated photonic structures with GeV emitters as a leading platform for spin-spin interactions.
关键词: diamond,germanium-vacancy centers,single photon emitters,quantum photonics,focused ion beam
更新于2025-09-09 09:28:46