- 标题
- 摘要
- 关键词
- 实验方案
- 产品
-
Semantic segmentation of high spatial resolution images with deep neural networks
摘要: Availability of reliable delineation of urban lands is fundamental to applications such as infrastructure management and urban planning. An accurate semantic segmentation approach can assign each pixel of remotely sensed imagery a reliable ground object class. In this paper, we propose an end-to-end deep learning architecture to perform the pixel-level understanding of high spatial resolution remote sensing images. Both local and global contextual information are considered. The local contexts are learned by the deep residual net, and the multi-scale global contexts are extracted by a pyramid pooling module. These contextual features are concatenated to predict labels for each pixel. In addition, multiple additional losses are proposed to enhance our deep learning network to optimize multi-level features from different resolution images simultaneously. Two public datasets, including Vaihingen and Potsdam datasets, are used to assess the performance of the proposed deep neural network. Comparison with the results from the published state-of-the-art algorithms demonstrates the effectiveness of our approach.
关键词: pyramid pooling,deep learning,global context information,high-resolution image segmentation,residual network
更新于2025-09-23 15:22:29