- 标题
- 摘要
- 关键词
- 实验方案
- 产品
-
Femtosecond-laser-ablation induced transformations in the structure and surface properties of diamond-like nanocomposite films
摘要: Femtosecond laser ablation processing is applied for surface modification and micropatterning of diamond-like nanocomposite (DLN) films (a-C:H:Si:O films). Using a visible femtosecond laser (wavelength 515 nm, pulse duration 320 fs), microgroove patterns have been fabricated on the DLN films, aimed at further studies of their properties. The studies were focused on (i) structural transformations in the surface layers using Raman spectroscopy and transmission electron microscopy (TEM), (ii) wettability of laser-patterned films, and (iii) nano/microscale friction properties of laser-patterned DLN films using lateral force microscopy. Raman spectroscopy and TEM data showed characteristic features of the surface graphitization during ultrashort-pulse ablation. High resolution TEM study of the microgrooves revealed the formation of cubic SiC nanocrystals (4–8 nm size) on the laser-ablated surface. The water contact angle measurements showed anisotropic wetting behavior of the grooved surfaces (the contact angle was different in the directions parallel and perpendicular to microgrooves), depending on the groove depth (aspect ratio). Lateral force microscopy examination (with micro-sized Si tips) showed that the laser-patterned regions exhibited low friction properties compared to the original surface. The obtained results demonstrate that femtosecond laser processing is an effective technique to generate new properties of hard DLN coatings at the micro and macroscale.
关键词: Diamond-like nanocomposite films,Femtosecond laser ablation,Micropatterning,SiC nanocrystals,Graphitization,Wettability
更新于2025-09-11 14:15:04
-
Comparison of HPHT and LPHT annealing of Ib synthetic diamond
摘要: Defect transformations in type Ib synthetic diamond annealed at a temperature of 1870 °C under stabilizing pressure (HPHT annealing) and in hydrogen atmosphere at normal pressure (LPHT annealing) are compared. Spectroscopic data obtained on the samples before and after annealing prove that the processes of nitrogen aggregation and formation of nitrogen-nickel complexes are similar in both cases. Essential differences between HPHT and LPHT annealing are stronger graphitization at macroscopic imperfections and enhanced lattice distortions around point defects in the latter case. The lattice distortion around point defects is revealed as a considerable broadening of zero-phonon lines of "soft" (vacancy-related) optical centers. It was found that LPHT annealing may enhance overall intensity of luminescence of HPHT-grown synthetic diamonds.
关键词: nitrogen aggregation,graphitization,low pressure high temperature annealing,synthetic type Ib diamond,spectral broadening,high pressure high temperature annealing
更新于2025-09-10 09:29:36
-
Ohmic graphite-metal contacts on oxygen-terminated lightly boron-doped CVD monocrystalline diamond
摘要: A process to obtain ohmic contacts on oxygen-terminated lightly boron-doped CVD monocrystalline diamond films was developed. Samples were contacted by Ti/Au metallic pads in the transmission line model (TLM) configuration. The electric contacts were placed onto a mesa structure produced on the CVD boron-doped layer. One of the samples was additionally implanted with helium ions at 10 keV in order to induce the formation of a graphitic layer underneath the diamond surface before contacting so as to improve electrical conduction. The electrical performance of both devices was characterized by the TLM method and compared. As a result, the sample with metallic electrodes exhibited a small and non-linear electrical conduction, while the graphitic/metallic contacts showed an ohmic behaviour with an estimated specific contact resistance as low as 3.3 × 10-4 Ω.cm2 for a doping level of a few 1017 cm-3. This approach opens the way to more efficient ohmic contacts on intrinsic or low-doped diamond that are crucial for the development of electronic devices and detectors.
关键词: oxygen terminations,graphitization,Ohmic graphite-metal contacts,lightly boron-doped CVD diamond film,ion implantation
更新于2025-09-04 15:30:14