- 标题
- 摘要
- 关键词
- 实验方案
- 产品
-
GravityCam: Wide-field high-resolution high-cadence imaging surveys in the visible from the ground
摘要: GravityCam is a new concept of ground-based imaging instrument capable of delivering significantly sharper images from the ground than is normally possible without adaptive optics. Advances in optical and near-infrared imaging technologies allow images to be acquired at high speed without significant noise penalty. Aligning these images before they are combined can yield a 2.5–3-fold improvement in image resolution. By using arrays of such detectors, survey fields may be as wide as the telescope optics allows. Consequently, GravityCam enables both wide-field high-resolution imaging and high-speed photometry. We describe the instrument and detail its application to provide demographics of planets and satellites down to Lunar mass (or even below) across the Milky Way. GravityCam is also suited to improve the quality of weak shear studies of dark matter distribution in distant clusters of galaxies and multiwavelength follow-ups of background sources that are strongly lensed by galaxy clusters. The photometric data arising from an extensive microlensing survey will also be useful for asteroseismology studies, while GravityCam can be used to monitor fast multiwavelength flaring in accreting compact objects and promises to generate a unique data set on the population of the Kuiper belt and possibly the Oort cloud.
关键词: asteroseismology,gravitational lensing: micro,Kuiper belt: general,(stars:) planetary systems,gravitational lensing: weak
更新于2025-09-23 15:22:29
-
KiDS-450: enhancing cosmic shear with clipping transformations
摘要: We present the first 'clipped' cosmic shear measurement using data from the Kilo-Degree Survey (KiDS-450). 'Clipping' transformations suppress the signal from the highest density, non-linear regions of cosmological fields. We demonstrate that these transformations improve constraints on S8 = σ8(Ωm/0.3)^0.5 when used in combination with conventional two-point statistics. For the KiDS-450 data, we find that the combined measurements improve the constraints on S8 by 17 per cent, compared to shear correlation functions alone. We determine the expectation value of the clipped shear correlation function using a suite of numerical simulations, and develop methodology to mitigate the impact of masking and shot noise. Future improvements in numerical simulations and mass reconstruction methodology will permit the precise calibration of clipped cosmic shear statistics such that clipping can become a standard tool in weak-lensing analyses.
关键词: gravitational lensing: weak,cosmological parameters,surveys,cosmology: observations
更新于2025-09-23 15:22:29
-
Testing the validity of the ray-tracing code GYOTO
摘要: Context. In the next few years, the near-infrared interferometer GRAVITY will be able to observe the Galactic center. Astrometric data will be obtained with an anticipated accuracy of 10 μas. To analyze these future data, we have developed a code called GYOTO to compute orbits and ray-trace images. Aims. We want to assess the validity and accuracy of GYOTO in a variety of contexts, in particular for stellar astrometry in the Galactic center. Furthermore, we want to tackle and complete a study made on the astrometric displacements that are due to lensing effects of a star of the central parsec with GYOTO. Methods. We first validate GYOTO in the weak-deflection limit (WDL) by studying primary caustics and primary critical curves obtained for a Kerr black hole. We compare GYOTO results to available analytical approximations and estimate GYOTO errors using an intrinsic estimator. In the strong-deflection limit (SDL), we choose to compare null geodesics computed by GYOTO and the ray-tracing code named Geokerr. Finally, we use GYOTO to estimate the apparent astrometric displacements of a star for different angles from Sagittarius A* (Sgr A*). Results. In the WDL, we find a good coherence between GYOTO results and approximations. The maximal difference is around 10?5 μas. Our intrinsic estimator finds a conservative uncertainty estimate also around 10?5 μas. In the SDL, both ray-tracing codes find the same photon’s coordinates with a maximal difference of about 10?3 μas. The shift of a star located behind the plane of sky containing Sgr A* is consistent with the current study. In addition, the effect of lensing on any star in this plane of sky is a radial shift by 5 μas, independent of the distance from Sgr A* up to a very large distance. Conclusions. We have demonstrated that GYOTO is accurate to a very high level, orders of magnitude better than the GRAVITY requirements. GYOTO is also valid in weak- and strong-deflection regimes and for very long integrations. At the astrometric precision that GRAVITY is aiming for, lensing effects must always be taken into account when fitting stellar orbits in the central parsec of the Galaxy.
关键词: gravitational lensing: weak,gravitational lensing: strong,black hole physics,Galaxy: center
更新于2025-09-23 15:21:21
-
Shear nulling after PSF Gaussianisation: Moment-based weak lensing measurements with subpercent noise bias
摘要: Context. Current optical imaging surveys for cosmology cover large areas of sky. Exploiting the statistical power of these surveys for weak lensing measurements requires shape measurement methods with subpercent systematic errors. Aims. We introduce a new weak lensing shear measurement algorithm, shear nulling after PSF Gaussianisation (SNAPG), designed to avoid the noise biases that affect most other methods. Methods. SNAPG operates on images that have been convolved with a kernel that renders the point spread function (PSF) a circular Gaussian, and uses weighted second moments of the sources. The response of such second moments to a shear of the pre-seeing galaxy image can be predicted analytically, allowing us to construct a shear nulling scheme that finds the shear parameters for which the observed galaxies are consistent with an unsheared, isotropically oriented population of sources. The inverse of this nulling shear is then an estimate of the gravitational lensing shear. Results. We identify the uncertainty of the estimated centre of each galaxy as the source of noise bias, and incorporate an approximate estimate of the centroid covariance into the scheme. We test the method on extensive suites of simulated galaxies of increasing complexity, and find that it is capable of shear measurements with multiplicative bias below 0.5 percent.
关键词: cosmology: observations,gravitational lensing: weak,methods: statistical
更新于2025-09-23 15:21:21
-
Galaxy Ellipticity Measurements in the Near-infrared for Weak Lensing
摘要: We investigate the value of the near-infrared imaging from upcoming surveys for constraining the ellipticities of galaxies. We select galaxies between 0.5???z?<?3 that are brighter than expected Euclid sensitivity limits from the GOODS-S and N ?elds in CANDELS. The co-added CANDELS/HST V+I and J+H images are degraded in resolution and sensitivity to simulate Euclid-quality optical and near-infrared (NIR) images. We then run GALFIT on these simulated images and ?nd that optical and NIR provide similar performances in measuring galaxy ellipticities at redshifts 0.5???z?<?3. At z?>?1.0, the NIR-selected source density is higher by a factor of 1.4 and therefore the standard error in NIR-derived ellipticities is about 30% smaller, implying a more precise ellipticity measurement. The good performance of the NIR is mainly because galaxies have an intrinsically smoother light distribution in the NIR bands than in the optical, the latter tracing the clumpy star-forming regions. In addition, the NIR bands have a higher surface brightness per pixel than the optical images, while being less affected by dust attenuation. Despite the worse spatial sampling and resolution of Euclid NIR compared to optical, the NIR approach yields equivalent or more precise galaxy ellipticity measurements. If systematics that affect shape such as dithering strategy and point-spread function undersampling can be mitigated, inclusion of the NIR can improve galaxy ellipticity measurements over all redshifts. This is particularly important for upcoming weak lensing surveys, such as with Euclid and WFIRST.
关键词: gravitational lensing: weak,cosmology: observations
更新于2025-09-23 15:21:21
-
Weak lensing magnification of SpARCS galaxy clusters
摘要: Context. Measuring and calibrating relations between cluster observables is critical for resource-limited studies. The mass–richness relation of clusters offers an observationally inexpensive way of estimating masses. Its calibration is essential for cluster and cosmological studies, especially for high-redshift clusters. Weak gravitational lensing magnification is a promising and complementary method to shear studies, that can be applied at higher redshifts. Aims. We aim to employ the weak lensing magnification method to calibrate the mass–richness relation up to a redshift of 1.4. We used the Spitzer Adaptation of the Red-Sequence Cluster Survey (SpARCS) galaxy cluster candidates (0.2 < z < 1.4) and optical data from the Canada France Hawaii Telescope (CFHT) to test whether magnification can be effectively used to constrain the mass of high-redshift clusters. Methods. Lyman-break galaxies (LBGs) selected using the u-band dropout technique and their colours were used as a background sample of sources. LBG positions were cross-correlated with the centres of the sample of SpARCS clusters to estimate the magnification signal, which was optimally-weighted using an externally-calibrated LBG luminosity function. The signal was measured for cluster sub-samples, binned in both redshift and richness. Results. We measured the cross-correlation between the positions of galaxy cluster candidates and LBGs and detected a weak lensing magnification signal for all bins at a detection significance of 2.6–5.5σ. In particular, the significance of the measurement for clusters with z > 1.0 is 4.1σ; for the entire cluster sample we obtained an average M200 of 1.28 +0.23 ?0.21 × 1014 M⊙. Conclusions. Our measurements demonstrated the feasibility of using weak lensing magnification as a viable tool for determining the average halo masses for samples of high redshift galaxy clusters. The results also established the success of using galaxy over-densities to select massive clusters at z > 1. Additional studies are necessary for further modelling of the various systematic effects we discussed.
关键词: galaxies: clusters: general,galaxies: clusters: individual: SpARCS,gravitational lensing: weak
更新于2025-09-23 15:21:21