修车大队一品楼qm论坛51一品茶楼论坛,栖凤楼品茶全国楼凤app软件 ,栖凤阁全国论坛入口,广州百花丛bhc论坛杭州百花坊妃子阁

oe1(光电查) - 科学论文

4 条数据
?? 中文(中国)
  • Biomimetic fog harvesting surface by photo-induced micro-patterning of zinc-oxide silver hierarchical nanostructures

    摘要: As water scarcity has become a major global problem, fog-harvesting technologies are considered an effective sustainable solution for water resources. Here, we report a novel approach to the fog-harvesting technology using zinc oxide-silver hierarchical nanostructures to mimic the Stenocara beetle’s back. Vertically aligned zinc oxide nanowires are first fabricated by a cost-effective and scalable hydrothermal method to produce a super-hydrophilic surface. Silver nanoparticles are then selectively synthesized by an additional photo-induced synthetic process on the zinc oxide nanowire surfaces to form a hydrophobic surface using the hierarchical nanostructures. The fog-harvesting performance was investigated using an artificial fog flow and by measuring the amount of harvested water for efficient fog harvesting. On the superhydrophilic surface, although the water droplets immediately were captured, they formed a puddle at the bottom of the surface due to the high adhesion between water and the surface. In contrast, on the hydrophobic surface, the capturing rate was very low even though the water droplets easily rolled off the surface. Compared to the non-patterned surface, the captured water film on the patterned hydrophilic region grew rapidly into a spherical shape and separated from the surface due to the surrounding hydrophobic regions. As a result, the patterned surface with 0.5 mm pattern size afforded a higher fog collection rate of 1233 mg/h than those of the superhydrophilic and hydrophobic surfaces of 1105 mg/h and 879 mg/h respectively.

    关键词: Fog harvesting,Biomimetics,Hierarchical nanostructure,Surface wettability

    更新于2025-09-23 15:22:29

  • Oxygen-Defected Molybdenum Oxides Hierarchical Nanostructure Constructed by Atomic-Level Thickness Nanosheets as an Efficient Absorber for Solar Steam Generation

    摘要: Solar steam generation is a potential approach for fresh water recycling, thus attracting increasing attention recently. To further promote water evaporation rate, some new materials need to be developed, such as plasmonic transition metal oxides. In this work, we report an oxygen-defected molybdenum oxides hierarchical nanostructure (MoOx HNS) composed of ultrathin nanosheets with atomic-level thickness, which is demonstrated as an efficient absorber for solar steam generation. Benefiting from broadband light absorption and special assembled architecture, the resulting MoOx HNS loaded on a PTFE membrane (MoOx HNS Membrane) exhibits excellent performance for boosting steam generation rate. Under 1 sun (1 kW m?2) illumination, the evaporation rate can reach at 1.255 kg m?2 h?1, with the energy conversion efficiency of 85.6%, which is one of the best performance compared with other desalination materials. Meanwhile, the MoOx HNS Membrane can achieve high-performance seawater desalination in both laboratorial and outdoor conditions. The enhanced water evaporation performance can be attributed to the synergistic effects of the efficient solar-to-thermal conversion and the unique channel structure. This work expands the scope of investigated materials which can be applied in seawater desalination system.

    关键词: MoOx hierarchical nanostructure,seawater desalination,photothermal conversion,oxygen vacancies,solar steam generation

    更新于2025-09-23 15:21:21

  • Simple Route to Interconnected, Hierarchically Structured, Porous Zn2SnO4 Nanospheres as Electron Transport Layer for Efficient Perovskite Solar Cells

    摘要: Constructing electron transport layer (ETL) with higher carrier mobility and suitable bandgap is of key importance as it greatly influences the photovoltaic performance of perovskite solar cells (PSCs). Zn2SnO4 (ZTO) carries a high electron mobility of 10–30 cm2 V-1 s-1, an order of magnitude over the widely used TiO2 ETL in perovskite solar cells (PSCs), rendering it an excellent alternative to TiO2 ETL. Herein, we report a simple yet robust polymer-templating route to interconnected, hierarchically structured, porous ZTO nanospheres as an efficient ETL for high-performance organolead halide PSCs. The porous ZTO nanospheres ETL, composed of an assembly of 4.5-nm ZTO nanoparticles on the surface of porous nanosphere possessing 80-100 nm cavity, renders markedly improved light absorption, enhanced electron extraction, facilitated charger transportation, and suppressed carrier recombination in the resulting PSCs, which exhibit a power conversion efficiency (PCE) of 17.14%, greatly outperforming the device based on the ZTO nanoparticles (14.02%; i.e., without porosity). As such, the strategy for crafting porous yet hierarchically structured semiconductors with high carrier mobility may open up an avenue to create robust ETL, and by extension, hole transport layer (HTL) for high-performance optoelectronics.

    关键词: Zn2SnO4,perovskite solar cells,high electron mobility,hierarchical nanostructure,Electron transport layer

    更新于2025-09-23 15:19:57

  • Self-assembled highly porous rugby-like hierarchical ZnO thin film formaldehyde gas sensor

    摘要: A new rugby-like ZnO thin film was self-assembled via a hydrothermal method and the influences of the hydrothermal temperature on crystal growth and gas sensing properties of ZnO thin films were investigated. The results showed that the highly porous rugby-like ZnO crystals were self-assembled via thin fan-shape sheets with abundant nanopores formed by interconnected the smaller nanoplates when the hydrothermal temperature was 140 (cid:1)C. Its specific surface area value reached 45.0 m2 g(cid:3)1. The sensor exhibited an excellent gas sensing response, a good selectivity towards formaldehyde and quick response characteristics at the optimum working temperature of 250 (cid:1)C.

    关键词: self-assemble,zinc oxide,gas sensing property,rugby-like hierarchical nanostructure

    更新于2025-09-12 10:27:22