修车大队一品楼qm论坛51一品茶楼论坛,栖凤楼品茶全国楼凤app软件 ,栖凤阁全国论坛入口,广州百花丛bhc论坛杭州百花坊妃子阁

oe1(光电查) - 科学论文

16 条数据
?? 中文(中国)
  • Two-dimensional analysis of the nonuniform quantum yields of multiple quantum wells for AlGaN-based deep-ultraviolet LEDs grown on AlN templates with dense macrosteps using cathodoluminescence spectroscopy

    摘要: AlGaN-based deep-ultraviolet light-emitting diodes (LEDs) incorporating uneven multiple quantum wells (MQWs) with inclined and terrace zones, which were fabricated on an AlN template with dense macrosteps, have exhibited a high internal quantum efficiency (IQE). To investigate the microscopic structure of uneven MQWs, cathodoluminescence (CL) mapping characterization was carried out, and the maps of the CL intensity at 300 K relative to that at 38 K were obtained for uneven MQWs that targeted 265 and 285 nm LEDs. At an electron beam current of less than 1.0 nA, the signals from inclined and terrace zones of the uneven MQWs were confirmed to satisfy the non-saturated excitation condition at 300 K. Nonradiative recombination (NR) was insufficiently frozen even at 38 K, specifically on the terraces in the 265 nm MQW, suggesting high concentrations of NR centers due to point defects (PDs). In contrast, NR in the 285 nm MQW at 38 K was closer to freeze-out. The concentration of PDs in the 285 nm MQW was likely to be lower than that in the 265 nm MQW. Finally, the ratios of the CL intensity at 300 K to those at 38 K were mapped, demonstrating an approach to creating an approximate map of IQE. The values in the CL intensity ratio maps are discussed by considering the analytical error factors. The results support the model of localized current injection through Ga-rich stripe zones in the n-AlGaN cladding layer.

    关键词: AlGaN,cathodoluminescence spectroscopy,internal quantum efficiency,deep-ultraviolet LEDs,multiple quantum wells

    更新于2025-09-12 10:27:22

  • Internal quantum efficiencies of AlGaN quantum dots grown by molecular beam epitaxy and emitting in the UVA to UVC ranges

    摘要: AlyGa1?yN quantum dots (QDs) have been grown by molecular beam epitaxy on AlxGa1?xN (0001) using a 2-dimensional–3-dimensional growth mode transition that leads to the formation of QDs. QDs have been grown for Al compositions y varying between 10% and 40%. The influence of the active region design [composition y, QD height, and bandgap difference (ΔEg) between the AlxGa1?xN cladding layer and the AlyGa1?yN QDs] is discussed based on microscopy, continuous wave photoluminescence (PL), and time-resolved PL (TRPL) measurements. In particular, increasing y leads to a shift of the QD emission toward shorter wavelengths, allowing covering a spectral range in the UV from 332 nm (UVA) to 276 nm (UVC) at room temperature (RT). The low-temperature (LT) internal quantum efficiency of the QD ensembles was estimated from TRPL experiments at 8 K and values between 11% and 66% were deduced. The highest internal quantum efficiency (IQE)-LT is found for the QDs with higher Al content y. Then, the PL spectrally integrated intensity ratios between RT and LT were measured to estimate the IQE of the samples at RT. The PL ratio is higher for larger ΔEg, for QDs with y of 0.1 or 0.2, and high PL intensity ratios up to 30% were also measured for QDs with larger y of 0.3 and 0.4. RT IQE values between 5% and 20% are deduced for AlyGa1?yN QDs emitting in the 276–308 nm range.

    关键词: AlGaN,internal quantum efficiency,UVC,quantum dots,molecular beam epitaxy,time-resolved photoluminescence,photoluminescence,UVA

    更新于2025-09-12 10:27:22

  • Performance of polycrystalline GaN based metal-semiconductor-metal (MSM) photodetector with different contact

    摘要: This paper describes performance of polycrystalline GaN based metal-semiconductor-metal (MSM) photodetector using different contact; Al, ITO, Ni and Pt. The performance of each photodetector was investigated in term of electrical resistivity (r ), signal-to-noise ratio (SNR), responsivity (R), internal quantum efficiency (η) and temporal responsivity. From the results, Ni is suggested to be a good contact for the photodetector. This is due to diffusion of NixO, formed by residual oxides on the GaN layer, into the Ni contact reduced the resistivity, thereby increasing the electrical conductivity of the photodetector. The photodetector with Ni contact demonstrated significant increase in SNR behavior with increasing bias voltage, while its r value was measured to be 2.02 M?.cm2, and η was 3.13%, 2.36% and 1.52%, at λ = 342 nm, 385 nm and 416 nm, respectively. From the temporal responsivity measurement, the rise time = 1.75 sec, the recovery time = 1.87 sec and the sensitivity = 5840%.

    关键词: MSM photodetector,electrical contact,resistivity,internal quantum efficiency and temporal responsivity,signal-to-noise ratio,polycrystalline GaN,responsivity

    更新于2025-09-12 10:27:22

  • An Investigation of Internal Quantum Efficiency of Bifacial Interdigitated Back Contact (IBC) Crystalline Silicon Solar Cell

    摘要: In this article, we investigated the internal quantum efficiency (IQE) properties of n-type bifacial interdigitated back contact crystalline silicon solar cells using an IQE mapping system. In the cell structure, high and low IQE values were observed above the emitter and back surface field (BSF) regions. The IQE values above the BSF busbar were drastically reduced due to electrical shading loss. Line scan profiles at different wavelengths showed the detailed distribution of IQE values. The IQE values varied greatly depending not only on the difference between emitter and BSF regions but also on the rear side structure such as the electrode width and the distance between the emitter and BSF regions. On the other hand, the IQE spectra at over 950 nm improved by increasing the light absorbance ratio from the rear side. After module formation, the IQE spectra at short wavelengths were significantly reduced. The IQE properties were obtained from the front and rear sides. The difference in the short-circuit current between front side illumination and rear side illumination was mainly due to optical shading loss and carrier recombination loss at the BSF region. For a high cell efficiency, it is necessary to improve the passivation properties of the BSF region and optimize the electrode design.

    关键词: Back contacts,internal quantum efficiency,silicon solar cells

    更新于2025-09-12 10:27:22

  • Thermal droop in high-quality InGaN LEDs

    摘要: Thermal droop is investigated in high-quality InGaN light-emitting diodes (LEDs). To determine whether it is caused by intrinsic variations in recombination or by transport effects, photoluminescence and electroluminescence measurements are compared. The former does not show signs of pronounced thermal droop, with a near-constant internal quantum efficiency and recombination lifetime, regardless of temperature. In contrast, strong thermal droop is observed in the latter, pointing to transport effects as a leading contributor. Finally, high-efficiency LEDs with near-ideal thermal droop are demonstrated.

    关键词: Thermal droop,recombination lifetime,electroluminescence,internal quantum efficiency,transport effects,photoluminescence,InGaN LEDs

    更新于2025-09-11 14:15:04

  • -related Materials

    摘要: Dominant recombination paths in AlN and AlxGa1?xN-related structures are investigated using cathodoluminescence (CL) mapping measurements and photoluminescence (PL) spectroscopy. The dark spot contrasts originating from nonradiative recombination at threading dislocations (TDs), which are observed in CL intensity maps, drastically decrease upon elevating the temperature. This is because carriers can reach TDs at low temperatures (9–60 K), but are captured by point defects (PDs) even in the vicinity of TDs near RT. Calculations based on the experimental results indicate that in the current AlN and Al-rich AlxGa1?xN crystals, TDs scarcely affect the internal quantum efficiency (IQE) at RT as long as the TD density is less than 2.6 × 1010 cm?2. Because a TD density less than 2.6 × 1010 cm?2 has already been achieved even for heteroepitaxially grown AlN films on sapphire substrates, it is evident that the most effective method to further improve the IQE of AlxGa1?xN-related materials is to reduce PDs not TDs. Moreover, we clarify the existence of two types of PD states, which mainly degrade the emission efficiency, using temperature-dependent PL measurements. Combining the CL and PL results allows the activation energies of these PDs and TDs to be evaluated. Furthermore, we highlight the probability that PDs, which predominantly act as nonradiative recombination centers at room temperature, are complexes formed by Al vacancies and oxygen impurities that enhance the deep-level emissions at 3.2 and 3.5–3.7 eV near room temperature. Such a large impact of PDs on the efficiency degradation may be attributed to the high density of Al-vacancy–related PDs in AlN and Al-rich AlxGa1?xN compared with that of Ga-vacancy–related PDs in GaN due to the small formation energy.

    关键词: AlxGa1?xN,cathodoluminescence,internal quantum efficiency,point defects,photoluminescence,nonradiative recombination,AlN,threading dislocations

    更新于2025-09-04 15:30:14