- 标题
- 摘要
- 关键词
- 实验方案
- 产品
-
Ionic Gating of Ultrathin and Leaky Ferroelectrics
摘要: Ionic liquids are used to induce reversible large area polarization switching in ultrathin and highly defective ferroelectric films. Long range electrostatic charge control is induced by modifying the electric double layer at an ionic liquid–PbZr0.2Ti0.8O3 interface with electrostatic and electrochemical control of polarization orientation in the ferroelectric layer. The localized nature of the ionic gating mechanism prohibits the presence of leakage current, which has historically limited the switching of ultrathin and/or electrically leaky ferroelectric films in solid metal-gated capacitor devices. This is demonstrated on ultrathin films and in massively defective films with >30% coverage of direct conducting channels running from surface to ground. This approach opens new design possibilities for integrating ultrathin ferroelectric films in functional electronic devices.
关键词: ferroelectrics,polarization switching,ionic liquids,ionic gating,device structure
更新于2025-09-23 15:22:29
-
Low-Voltage-Operated Highly Sensitive Graphene Hall Elements by Ionic Gating
摘要: The advanced Hall magnetic sensor using an ion-gated graphene field-effect transistor demonstrates a high current-normalized sensitivity larger than 3000 V/AT and low operation voltages smaller than 0.5 V. From commercially available graphene-on-SiO2 wafers, large-area arrays of ion-gated graphene Hall element (ig-GHE) samples are prepared through complementary metal-oxide-semiconductor-compatible fabrication processes except the final addition of ionic liquid electrolyte covering the exposed graphene channel and the separate gate-electrode area. The enhanced carrier tunability by ionic gating enables this ig-GHE device to be extremely sensitive to magnetic fields in low-voltage-operation regimes. Further electrical characterization indicates that the operation window is limited by the nonuniform carrier concentration over the channel under high bias conditions. The drain-current-normalized magnetic resolution of the device measured using the low-frequency noise technique is comparable to the previously reported values despite its significant low power consumption.
关键词: Hall element array,magnetic Hall sensor,graphene,low-voltage operation,ionic gating
更新于2025-09-19 17:15:36
-
Impact of Post-Lithography Polymer Residue on the Electrical Characteristics of MoS <sub/>2</sub> and WSe <sub/>2</sub> Field Effect Transistors
摘要: The residue of common photo- and electron-beam resists, such as poly(methyl methacrylate) (PMMA), is often present on the surface of 2D crystals after device fabrication. The residue degrades device properties by decreasing carrier mobility and creating unwanted doping. Here, MoS2 and WSe2 field effect transistors (FETs) with residue are cleaned by contact mode atomic force microscopy (AFM) and the impact of the residue on: 1) the intrinsic electrical properties, and 2) the effectiveness of electric double layer (EDL) gating are measured. After cleaning, AFM measurements confirm that the surface roughness decreases to its intrinsic state (i.e., ≈0.23 nm for exfoliated MoS2 and WSe2) and Raman spectroscopy shows that the characteristic peak intensities (E2g and A1g) increase. PMMA residue causes p-type doping corresponding to a charge density of ≈7 × 1011 cm?2 on back-gated MoS2 and WSe2 FETs. For FETs gated with polyethylene oxide (PEO)76:CsClO4, removing the residue increases the charge density by 4.5 × 1012 cm?2, and the maximum drain current by 247% (statistically significant, p < 0.05). Removing the residue likely allows the ions to be positioned closer to the channel surface, which is essential for achieving the best possible electrostatic gate control in ion-gated devices.
关键词: MoS2,ionic gating,WSe2,field effect transistor,polymer residue
更新于2025-09-10 09:29:36