- 标题
- 摘要
- 关键词
- 实验方案
- 产品
-
Nondestructive nanofabrication on monocrystalline silicon via site-controlled formation and removal of oxide mask
摘要: A nondestructively patterned silicon substrate serves as an ideal support for forming high-quality optical structures or devices. A new approach was proposed for fabricating site-controlled structures without destruction on a monocrystalline silicon surface via local anodic oxidation (LAO) and two-step postetching. The nondestruction was demonstrated by conductivity detection with conductive atomic force microscopy (AFM), and an almost perfect crystal lattice was observed from the fabricated hillock by high-resolution transmission electron microscopy (HRTEM). By programming AFM tip traces for LAO processing, site-controlled nondestructive patterns with di?erent layouts can be produced. This approach provides a new route for realizing nondestructive optical substrates.
关键词: conductive atomic force microscopy,high-resolution transmission electron microscopy,local anodic oxidation,nondestructive nanofabrication,monocrystalline silicon
更新于2025-11-14 17:04:02
-
Electrode-free anodic oxidation nanolithography of low-dimensional materials
摘要: Scanning probe lithography based on local anodic oxidation (LAO) provides a robust and general nanolithography tool for a wide range of applications. Its practical use, however, has been strongly hampered due to the requirement of a pre-fabricated micro-electrode to conduct the driving electrical current. Here we report a novel electrode-free LAO technique, which enables in-situ patterning of as-prepared low-dimensional materials and heterostructures with great flexibility and high precision. Unlike conventional LAO driven by a DC current, the electrode-free LAO is driven by a high-frequency (>10 kHz) AC current applied through capacitive coupling, which eliminates the need of a contacting electrode and can be used even for tailoring insulating materials. Using this technique, we demonstrated flexible nanolithography of graphene, hexagonal boron nitride (hBN), and carbon nanotubes (CNTs) on insulating substrates with ~10-nanometer precision. In addition, the electrode-free LAO exhibits high etching quality without oxide residues left. Such an in-situ and electrode-free nanolithography with high etching quality opens up new opportunities for fabricating ultraclean nanoscale devices and heterostructures with great flexibility.
关键词: electrode-free local anodic oxidation,graphene,high-frequency AC voltage,low-dimensional materials,Scanning probe lithography
更新于2025-09-23 15:21:21