修车大队一品楼qm论坛51一品茶楼论坛,栖凤楼品茶全国楼凤app软件 ,栖凤阁全国论坛入口,广州百花丛bhc论坛杭州百花坊妃子阁

oe1(光电查) - 科学论文

6 条数据
?? 中文(中国)
  • [IEEE 2019 International Conference on Numerical Simulation of Optoelectronic Devices (NUSOD) - Ottawa, ON, Canada (2019.7.8-2019.7.12)] 2019 International Conference on Numerical Simulation of Optoelectronic Devices (NUSOD) - Analysis of Carrier Transport through GaN/AlN Periodically Stacked Structure Photodiode

    摘要: In this paper, we focus our attention on the performance of read heads under the off-track reading condition when the reader is under the influence of the recorded magnetization patterns on the medium, and analyze how the magnetic field due to various data patterns impacts the read head behavior. The analysis is based on the micromagnetic modeling of the state of magnetization in read sensor considering its external magnetic fields due to both the hard bias and the media magnetization pattern. The effects of various magnetization patterns on media are analyzed. The effect of thermal magnetic agitation of the gyromagnetical precession of magnetizations is also evaluated. It is shown that to account for such effect is important for evaluation of magnetic recording schemes for extremely high density.

    关键词: Finite element analysis,micromagnetics,magnetic recording,magnetic sensors

    更新于2025-09-23 15:19:57

  • Liquid Crystal Based Rib Waveguide

    摘要: In this paper, we focus our attention on the performance of read heads under the off-track reading condition when the reader is under the influence of the recorded magnetization patterns on the medium, and analyze how the magnetic field due to various data patterns impacts the read head behavior. The analysis is based on the micromagnetic modeling of the state of magnetization in read sensor considering its external magnetic fields due to both the hard bias and the media magnetization pattern. The effects of various magnetization patterns on media are analyzed. The effect of thermal magnetic agitation of the gyromagnetical precession of magnetizations is also evaluated. It is shown that to account for such effect is important for evaluation of magnetic recording schemes for extremely high density.

    关键词: magnetic sensors,micromagnetics,magnetic recording,Finite element analysis

    更新于2025-09-19 17:13:59

  • [IEEE TENCON 2018 - 2018 IEEE Region 10 Conference - Jeju, Korea (South) (2018.10.28-2018.10.31)] TENCON 2018 - 2018 IEEE Region 10 Conference - Examination of Compact and Online Diagnosis Methods Based on Temporal Fluctuation of String Currents of a Photovoltaic Solar Plant

    摘要: In this paper, we focus our attention on the performance of read heads under the off-track reading condition when the reader is under the influence of the recorded magnetization patterns on the medium, and analyze how the magnetic field due to various data patterns impacts the read head behavior. The analysis is based on the micromagnetic modeling of the state of magnetization in read sensor considering its external magnetic fields due to both the hard bias and the media magnetization pattern. The effects of various magnetization patterns on media are analyzed. The effect of thermal magnetic agitation of the gyromagnetical precession of magnetizations is also evaluated. It is shown that to account for such effect is important for evaluation of magnetic recording schemes for extremely high density.

    关键词: magnetic sensors,micromagnetics,magnetic recording,Finite element analysis

    更新于2025-09-19 17:13:59

  • [IEEE 2019 Conference on Lasers and Electro-Optics Europe & European Quantum Electronics Conference (CLEO/Europe-EQEC) - Munich, Germany (2019.6.23-2019.6.27)] 2019 Conference on Lasers and Electro-Optics Europe & European Quantum Electronics Conference (CLEO/Europe-EQEC) - Metamaterials, Anapoles and Flying Donuts

    摘要: Heat-assisted magnetic recording (HAMR) allows for data writing in hard disks beyond 1 Tb/in2 areal density, by temporarily heating the area of a single bit to its Curie temperature. The metallic optical antenna or near-?eld transducer (NFT), used to apply the nanoscale heating to the media, may self-heat by several hundreds of degrees. With the NFT reaching such extreme temperatures, demonstrations of HAMR technology experience write-head lifetimes that are orders of magnitude less than that required for a commercial product. Hence, heating of the NFT is of upmost importance. In this paper, we ?rst derive fundamental limits on the temperature ratio NFT/Media to drive NFT design choices for low-temperature operation. Next, we employ inverse electromagnetic design software, which solves for unexpected geometries of the NFT and waveguide. We present computationally generated designs for the waveguide feeding the NFT that offer a 50% reduction in NFT self-heating (~220 °C) compared with typical industry designs.

    关键词: HAMR,optimization,plasmonics,nanophotonics,near-?eld transducer (NFT),inverse problem,heat-assisted magnetic recording thermal,computational electromagnetics,hard disks,gradient methods,management,Adjoint method,optical antenna

    更新于2025-09-19 17:13:59

  • [IEEE ESSDERC 2019 - 49th European Solid-State Device Research Conference (ESSDERC) - Cracow, Poland (2019.9.23-2019.9.26)] ESSDERC 2019 - 49th European Solid-State Device Research Conference (ESSDERC) - Suspended Antenna-Coupled Nanothermocouple Array for Long-Wave Infrared Detection

    摘要: Heat-assisted magnetic recording (HAMR) allows for data writing in hard disks beyond 1 Tb/in2 areal density, by temporarily heating the area of a single bit to its Curie temperature. The metallic optical antenna or near-field transducer (NFT), used to apply the nanoscale heating to the media, may self-heat by several hundreds of degrees. With the NFT reaching such extreme temperatures, demonstrations of HAMR technology experience write-head lifetimes that are orders of magnitude less than that required for a commercial product. Hence, heating of the NFT is of upmost importance. In this paper, we first derive fundamental limits on the temperature ratio NFT/Media to drive NFT design choices for low-temperature operation. Next, we employ inverse electromagnetic design software, which solves for unexpected geometries of the NFT and waveguide. We present computationally generated designs for the waveguide feeding the NFT that offer a 50% reduction in NFT self-heating (~220 °C) compared with typical industry designs.

    关键词: optical antenna,Adjoint method,computational electromagnetics,heat-assisted magnetic recording,near-field transducer (NFT),management,thermal,nanophotonics,plasmonics,gradient methods,inverse problem,optimization,hard disks

    更新于2025-09-19 17:13:59

  • Plasmonic layer-selective all-optical switching of magnetization with nanometer resolution

    摘要: All-optical magnetization reversal with femtosecond laser pulses facilitates the fastest and least dissipative magnetic recording, but writing magnetic bits with spatial resolution better than the wavelength of light has so far been seen as a major challenge. Here, we demonstrate that a single femtosecond laser pulse of wavelength 800 nm can be used to toggle the magnetization exclusively within one of two 10-nm thick magnetic nanolayers, separated by just 80 nm, without affecting the other one. The choice of the addressed layer is enabled by the excitation of a plasmon-polariton at a targeted interface of the nanostructure, and realized merely by rotating the polarization-axis of the linearly-polarized ultrashort optical pulse by 90°. Our results unveil a robust tool that can be deployed to reliably switch magnetization in targeted nanolayers of heterostructures, and paves the way to increasing the storage density of opto-magnetic recording by a factor of at least 2.

    关键词: femtosecond laser pulses,plasmon-polariton,storage density,magnetic recording,all-optical magnetization reversal

    更新于2025-09-11 14:15:04