修车大队一品楼qm论坛51一品茶楼论坛,栖凤楼品茶全国楼凤app软件 ,栖凤阁全国论坛入口,广州百花丛bhc论坛杭州百花坊妃子阁

oe1(光电查) - 科学论文

2 条数据
?? 中文(中国)
  • Electro-Optical Properties of Monolayer and Bilayer Pentagonal BN: First Principles Study

    摘要: Two-dimensional hexagonal boron nitride (hBN) is an insulator with polar covalent B-N bonds. Monolayer and bilayer pentagonal BN emerge as an optoelectronic material, which can be used in photo-based devices such as photodetectors and photocatalysis. Herein, we implement spin polarized electron density calculations to extract electronic/optical properties of mono- and bilayer pentagonal BN structures, labeled as B2N4, B3N3, and B4N2. Unlike the insulating hBN, the pentagonal BN exhibits metallic or semiconducting behavior, depending on the detailed pentagonal structures. The origin of the metallicity is attributed to the delocalized boron (B) 2p electrons, which has been veri?ed by electron localized function and electronic band structure as well as density of states. Interestingly, all 3D networks of different bilayer pentagonal BN are dynamically stable unlike 2D structures, whose monolayer B4N2 is unstable. These 3D materials retain their metallic and semiconductor nature. Our ?ndings of the optical properties indicate that pentagonal BN has a visible absorption peak that is suitable for photovoltaic application. Metallic behavior of pentagonal BN has a particular potential for thin-?lm based devices and nanomaterial engineering.

    关键词: optical properties,electronic properties,metallic behavior,mono/bilayer pentagonal BN

    更新于2025-09-16 10:30:52

  • The influence of edge structure on the optoelectronic properties of Si <sub/>2</sub> BN quantum dot

    摘要: In recent work, we have investigated the electronic and optical properties of pristine and functionalized Si2BN quantum dots (QDs) using first-principles calculations. Due to the edge functionalization, Si2BN QDs have binding energies of ?0.96 eV and ?2.08 eV per hydrogen atom for the adsorption of single and double hydrogen atoms, respectively. These results reveal the stability and the bonding nature of hydrogen at the edges of Si2BN QD. In particular, the charge transfer between hydrogen and other atoms is explicitly increased. The electronic band structure of pristine Si2BN QD shows a metallic behavior with a finite number of electronic states in the density of states at the Fermi level. The frequency-dependent optical properties, such as refractive index, extinction coefficient, absorption coefficient, electron energy loss spectra, and reflectivity, are computed for both the parallel and perpendicular components of electric field polarization. The higher absorption was found in the infrared regime. The present study shows that the functionalization of Si2BN QD by two hydrogen atoms is energetically stable. It offers a promising application of Si2BN QD, which can be used in optical nanodevices such as photodetectors and biomedical imagination.

    关键词: optical properties,Si2BN quantum dot,first-principles calculations,metallic behavior,electronic properties,hydrogen functionalization,infrared absorption,optical nanodevices

    更新于2025-09-12 10:27:22