- 标题
- 摘要
- 关键词
- 实验方案
- 产品
-
Beta-lead oxide quantum dot (β-PbO QD)/polystyrene (PS) composite films and their applications in ultrafast photonics
摘要: Polymer composite films, particularly those based on polymers and layered nanomaterials, are attractive materials for exploiting the properties of multiple materials for applications in electronics and photonics. In this work, a beta-lead oxide quantum dot (β-PbO QD)/polystyrene (PS) composite film is successfully fabricated by a solution blending method. The β-PbO QDs are well-distributed within a β-PbO QD/PS composite film and the composite film is transparent and flexible. Owing to the almost complete insolubility of both β-PbO QDs and PS, the as-fabricated β-PbO QD/PS composite film holds the nonlinear photonic response from 540 nm to 1060 nm under complete water immersion, confirming its excellent stability to high humidity. Additionally, the β-PbO QD/PS composite film exhibits a considerable capacity for optical modulation owing to a strong nonlinear absorption coefficient compared with those of other two-dimensional (2D) materials. On the basis of a home-made β-PbO QD/PS composite film saturable absorber, stable mode-locked pulses at 1060 nm are generated under humid conditions. It is anticipated that the β-PbO QD/PS composite films enable the exploitation of new waterproof, flexible photonic devices based on functional 2D materials and polymers.
关键词: composite films,mode-locked pulses,ultrafast photonics,polystyrene,nonlinear absorption,beta-lead oxide quantum dot
更新于2025-11-19 16:56:42
-
Analysis of laser radiation using the Nonlinear Fourier transform
摘要: Modern high-power lasers exhibit a rich diversity of nonlinear dynamics, often featuring nontrivial co-existence of linear dispersive waves and coherent structures. While the classical Fourier method adequately describes extended dispersive waves, the analysis of time-localised and/or non-stationary signals call for more nuanced approaches. Yet, mathematical methods that can be used for simultaneous characterisation of localized and extended fields are not yet well developed. Here, we demonstrate how the Nonlinear Fourier transform (NFT) based on the Zakharov-Shabat spectral problem can be applied as a signal processing tool for representation and analysis of coherent structures embedded into dispersive radiation. We use full-field, real-time experimental measurements of mode-locked pulses to compute the nonlinear pulse spectra. For the classification of lasing regimes, we present the concept of eigenvalue probability distributions. We present two field normalisation approaches, and show the NFT can yield an effective model of the laser radiation under appropriate signal normalisation conditions.
关键词: eigenvalue probability distributions,signal normalisation,Zakharov-Shabat spectral problem,mode-locked pulses,Nonlinear Fourier transform
更新于2025-09-12 10:27:22