修车大队一品楼qm论坛51一品茶楼论坛,栖凤楼品茶全国楼凤app软件 ,栖凤阁全国论坛入口,广州百花丛bhc论坛杭州百花坊妃子阁

oe1(光电查) - 科学论文

2 条数据
?? 中文(中国)
  • Electrophoresis Assembly of Novel Superhydrophobic Molybdenum Trioxide (MoO3) Films with Great Stability

    摘要: This work presents a hydrothermal synthesis approach to produce novel schistose molybdenum trioxide (MoO3) powders with wide application, and introduces a facile electrophoresis assembly technique to construct the superhydrophobic MoO3 films (SMFs) with contact angle up to 169 ± 1° at normal pressure and temperature. The microstructures and chemical compositions of product were analyzed by field emission scanning electron microcopy (FESEM), energy dispersive X-ray spectroscopy (EDX), X-ray diffraction (XRD). The wettability and stability studies indicate that the SMFs all show great resistance in various environments with adjusting factors, including droplets with different surface tension, pH, relative humidity, etc., and the stability can be maintained at least for five months. Notably, this paper will provides a valuable reference for designing novel oxide powders and their high-efficient hydrophobic film formation with self-cleaning or water proof properties.

    关键词: superhydrophobic stability,Hydrothermal synthesis,Electrophoretic deposition,Schistose molybdenum trioxide,high-efficient

    更新于2025-09-19 17:15:36

  • Lateral InSe p–n Junction Formed by Partial Doping for Use in Ultrathin Flexible Solar Cells

    摘要: Two-dimensional InSe possesses good electrical conductivity, intrinsic and structural flexibility, high chemical stability, and a tunable band gap, enabling it to be a promising candidate for flexible and wearable solar cells. Here we construct a lateral p?n junction by partially doping molybdenum trioxide (MoO3) at the surface of the InSe monolayer. Our density functional theory calculations reveal that the strong hybridization between MoO3 and InSe induces a lateral built-in electric field in the partially doped substrate and promotes the effective separation of carriers. Under a large range of external stains, the doped InSe can maintain the direct band gap, and the lateral structure device exhibits power conversion efficiencies over 5% and high carrier mobility around 1000 cm2 V?1 s?1. In particular, a power conversion efficiency of 20.7% can be achieved with 10% compressive strain. The partially doped InSe monolayer is expected to be used as an ultrathin flexible solar cell.

    关键词: lateral p?n junction,density functional theory,carrier mobility,flexible solar cells,power conversion efficiency,Two-dimensional InSe,molybdenum trioxide

    更新于2025-09-11 14:15:04