- 标题
- 摘要
- 关键词
- 实验方案
- 产品
-
[IEEE 2020 IEEE Texas Power and Energy Conference (TPEC) - College Station, TX, USA (2020.2.6-2020.2.7)] 2020 IEEE Texas Power and Energy Conference (TPEC) - A Simplified DC Capacitor Active Voltage-Balance Algorithm with Common-Mode Voltage Reduction using Active-Zero SVPWM for Three-Level Photovoltaic Grid-Tie Inverter Application
摘要: This paper introduces a digitally controlled single-phase rectifier with power factor correction (PFC) based on a modified three-level boost converter topology. In comparison with the conventional boost-based systems, the new PFC rectifier has about three times smaller inductor and significantly lower switching losses. The improvements are achieved by replacing the output capacitor of the boost converter with a nonsymmetric active capacitive divider, with a 3:1 division ratio, and by utilizing the downstream converter stage for the capacitive divider’s center-tap voltage regulation. The nonsymmetric voltage divider and applied switching sequence effectively provide four-level converter behavior using the same number of components as three-level converters. As a result, a 66% reduction of the inductor compared to the conventional boost-based PFC and a 33% compared to the standard three-level solutions operating at the same effective switching frequencies are also achieved. Experimental results obtained with a 400 W, 200 kHz, universal input voltage (85 Vrms –265 Vrms) PFC prototype demonstrate three times smaller inductor current ripple than that of the conventional boost converter allowing for the same inductor reduction. Efficiency improvements of up to a 6% are also demonstrated.
关键词: boost converter,power factor correction (PFC),multilevel converters,AC-DC converters
更新于2025-09-23 15:21:01
-
[IEEE 2019 IEEE 26th International Symposium on the Physical and Failure Analysis of Integrated Circuits (IPFA) - Hangzhou, China (2019.7.2-2019.7.5)] 2019 IEEE 26th International Symposium on Physical and Failure Analysis of Integrated Circuits (IPFA) - Application of Laser Deprocessing Technique in Physical Failure Analysis on Memory Bit-counting
摘要: This paper introduces a digitally controlled single-phase rectifier with power factor correction (PFC) based on a modified three-level boost converter topology. In comparison with the conventional boost-based systems, the new PFC rectifier has about three times smaller inductor and significantly lower switching losses. The improvements are achieved by replacing the output capacitor of the boost converter with a nonsymmetric active capacitive divider, with a 3:1 division ratio, and by utilizing the downstream converter stage for the capacitive divider’s center-tap voltage regulation. The nonsymmetric voltage divider and applied switching sequence effectively provide four-level converter behavior using the same number of components as three-level converters. As a result, a 66% reduction of the inductor compared to the conventional boost-based PFC and a 33% compared to the standard three-level solutions operating at the same effective switching frequencies are also achieved. Experimental results obtained with a 400 W, 200 kHz, universal input voltage (85 Vrms –265 Vrms ) PFC prototype demonstrate three times smaller inductor current ripple than that of the conventional boost converter allowing for the same inductor reduction. Efficiency improvements of up to a 6% are also demonstrated.
关键词: boost converter,power factor correction (PFC),multilevel converters,AC-DC converters
更新于2025-09-23 15:19:57
-
[IEEE 2019 IEEE Energy Conversion Congress and Exposition (ECCE) - Baltimore, MD, USA (2019.9.29-2019.10.3)] 2019 IEEE Energy Conversion Congress and Exposition (ECCE) - Levelized-Cost-of-Electricity-Driven Design Optimization for Medium-Voltage Transformerless Photovoltaic Converters
摘要: Design approaches for power electronics are typically focused on efficiency and power density; however, these strategies do not guarantee cost optimality in any well-defined sense. To overcome this shortcoming, we propose a design framework that yields circuit parameters that minimize the levelized cost of electricity (LCOE) of a generation system. LCOE serves as a meaningful metric since it captures total lifetime costs — including hardware, balance of system, and maintenance costs — and includes the impacts of power conversion efficiency and revenue from harvested energy. To obtain a tractable design problem, we formulate an approximate LCOE improvement model that quantifies the changes in LCOE resulting from a candidate converter design. We apply this framework to a multilevel cascaded topology for low-voltage dc to medium-voltage ac conversion without line-frequency transformers. An example 200 kW commercial-scale system is studied and the solution yields a design with 15 cascaded stages, 98.01% efficiency, and an LCOE reduction of 2.0%.
关键词: design optimization,multilevel converters,levelized cost of electricity
更新于2025-09-12 10:27:22
-
Extended Reactive Power Exchange With Faulty cells in Grid tied Cascaded H-Bridge converter for Solar PhotoVoltaic Application
摘要: Fault tolerant operation is a key feature of grid tied PV fed Cascaded H-Bridge (CHB) converter, where the converter operates continuously with faulty bypassed cells. After bypassing the faulty cells, the number of healthy cells decreases, the available dc link voltage reduces and active power among the phases become unequal. As a result, the converter produces unbalanced and distorted grid currents. Moreover, the maximum reactive power exchanged with the grid gets reduced with the available DC link voltage. This paper injection proposes a novel zero sequence voltage technique for balancing the grid currents and preventing over modulation in each cell of the converter. The proposed technique extends the reactive power capability of the converter during post fault condition. Additionally, it also helps in equal active and reactive power flow in each phase of the converter. A new PWM clamping strategy is proposed in this paper to implement the zero sequence voltage addition in the converter. The proposed concept is verified through computer simulation and experimental results.
关键词: cascaded H-bridge (CHB) multilevel converters,PWM clamping strategy,solar PhotoVoltaic (PV),fault tolerance,reactive power,Ancillary services
更新于2025-09-11 14:15:04