- 标题
- 摘要
- 关键词
- 实验方案
- 产品
-
Pathways to excitation of atoms with bicircular laser pulses
摘要: We study the excitation of the hydrogen atom by bichromatic circularly polarized laser pulses using numerical solutions of the time-dependent Schr?dinger equation. The results are in agreement with the selection rules for multiphoton processes in such fields, namely, excited states are populated in which orbital angular momentum and magnetic quantum numbers are either both odd or both even, independent of the relative helicity, peak intensity, and pulse duration of the pulses. For co-rotating pulses the results show that excitation predominantly proceeds to states with magnetic quantum number of the same helicity as the laser pulses. Besides pathways via direct photon absorption from the ground state our results indicate that a transfer of population among the Rydberg states occurs via (cid:2)-type transitions. In the case of counter-rotating pulses the largest excitation probability is found for Rydberg states that differ in magnetic quantum number by (cid:3)m = ±3. This pattern allows us to estimate how many photons from each of the two bichromatic fields have been absorbed. Finally, we confirm that a population in Rydberg states beyond a maximum orbital angular quantum number is unlikely.
关键词: Rydberg states,hydrogen atom,bichromatic circularly polarized laser pulses,time-dependent Schr?dinger equation,multiphoton processes
更新于2025-09-23 15:21:01
-
Ionization of hydrogen chloride in few-cycle intense laser pulses
摘要: The single ionization of HCl (X^1Σ^+) molecules in few-cycle intense laser pulses at 800 nm has been studied for laser intensities ranging from 2X 10^13 to 1.4X 10^14 W/cm^2. Total and partial ionization probabilities were computed in the framework of the time-dependent Hartree-Fock theory. The influence of the laser pulse duration and the carrier envelope phase on the HCl ionization was investigated.
关键词: time-dependent Hartree-Fock theory,molecular interactions with photons,single molecular ionization,multiphoton processes,intense-field molecular ionization
更新于2025-09-11 14:15:04