- 标题
- 摘要
- 关键词
- 实验方案
- 产品
-
Development of All-Diamond Scanning Probes Based on Faraday Cage Angled Etching Techniques
摘要: We are proposing a novel fabrication method for single crystal diamond scanning probes for atomic force microscopy (AFM), exploiting Faraday cage angled etching (FCAE). Common, oxygen-based, inductively coupled plasma (ICP) dry etching processes for diamond are limited with respect to the achievable geometries. The fabrication of freestanding micro- and nanostructures is therefore challenging. This is a major disadvantage for several application fields e.g., for realizing scanning magnetometry probes based on nitrogen vacancy (NV) centres and capable of measuring magnetic fields at the nanoscale. Combining a planar design with FCAE and state-of-the-art electron beam lithography (EBL) yields a reduction of process complexity and cost compared to the established fabrication technology of micro-opto-mechanical diamond devices. Here, we report on the direct comparison of both approaches and present first proof-of-concept planar-FCAE-prototypes for scanning probe applications.
关键词: Faraday cage angled etching,scanning magnetometry,atomic force microscopy,diamond scanning probes,nitrogen vacancy centres
更新于2025-09-23 15:19:57
-
Optomagnetic plasmonic nanocircuits
摘要: The coupling between solid-state quantum emitters and nanoplasmonic waveguides is essential for the realization of integrated circuits for various quantum information processing protocols, communication, and sensing. Such applications benefit from a feasible, scalable and low loss fabrication method as well as efficient coupling to nanoscale waveguides. Here, we demonstrate optomagnetic plasmonic nanocircuitry for guiding, routing and processing the readout of electron spins of nitrogen vacancy centres. This optimized method for the realization of highly efficient and ultracompact plasmonic circuitry is based on enhancing the plasmon propagation length and improving the coupling efficiency. Our results show 5 times enhancement in the plasmon propagation length using (3-mercaptopropyl) trimethoxysilane (MPTMS) and 5.2 times improvement in the coupling efficiency by introducing a grating coupler, and these enable the design of more complicated nanoplasmonic circuitries for quantum information processing. The integration of efficient plasmonic circuitry with the excellent spin properties of nitrogen vacancy centres can potentially be utilized to extend the applications of nanodiamonds and yield a great platform for the realization of on-chip quantum information networks.
关键词: nitrogen vacancy centres,plasmon propagation length,nanoplasmonic waveguides,quantum information processing,coupling efficiency
更新于2025-09-11 14:15:04