修车大队一品楼qm论坛51一品茶楼论坛,栖凤楼品茶全国楼凤app软件 ,栖凤阁全国论坛入口,广州百花丛bhc论坛杭州百花坊妃子阁

oe1(光电查) - 科学论文

2 条数据
?? 中文(中国)
  • A Comparative Assessment of Different Modeling Algorithms for Estimating Leaf Nitrogen Content in Winter Wheat Using Multispectral Images from an Unmanned Aerial Vehicle

    摘要: Unmanned aerial vehicle (UAV)-based remote sensing (RS) possesses the significant advantage of being able to efficiently collect images for precision agricultural applications. Although numerous methods have been proposed to monitor crop nitrogen (N) status in recent decades, just how to utilize an appropriate modeling algorithm to estimate crop leaf N content (LNC) remains poorly understood, especially based on UAV multispectral imagery. A comparative assessment of different modeling algorithms (i.e., simple and non-parametric modeling algorithms alongside the physical model retrieval method) for winter wheat LNC estimation is presented in this study. Experiments were conducted over two consecutive years and involved different winter wheat varieties, N rates, and planting densities. A five-band multispectral camera (i.e., 490 nm, 550 nm, 671 nm, 700 nm, and 800 nm) was mounted on a UAV to acquire canopy images across five critical growth stages. The results of this study showed that the best-performing vegetation index (VI) was the modified renormalized difference VI (RDVI), which had a determination coefficient (R2) of 0.73 and a root mean square error (RMSE) of 0.38. This method was also characterized by a high processing speed (0.03 s) for model calibration and validation. Among the 13 non-parametric modeling algorithms evaluated here, the random forest (RF) approach performed best, characterized by R2 and RMSE values of 0.79 and 0.33, respectively. This method also had the advantage of full optical spectrum utilization and enabled flexible, non-linear fitting with a fast processing speed (2.3 s). Compared to the other two methods assessed here, the use of a look up table (LUT)-based radiative transfer model (RTM) remained challenging with regard to LNC estimation because of low prediction accuracy (i.e., an R2 value of 0.62 and an RMSE value of 0.46) and slow processing speed. The RF approach is a fast and accurate technique for N estimation based on UAV multispectral imagery.

    关键词: UAV,multispectral imagery,radiative transfer model,LNC,vegetation index,non-parametric regression

    更新于2025-09-23 15:22:29

  • [IEEE IGARSS 2018 - 2018 IEEE International Geoscience and Remote Sensing Symposium - Valencia, Spain (2018.7.22-2018.7.27)] IGARSS 2018 - 2018 IEEE International Geoscience and Remote Sensing Symposium - Automatic Derivation of Cropland Phenological Parameters by Adaptive Non-Parametric Regression of Sentinel-2 Ndvi Time Series

    摘要: Satellite Image Time Series (SITS), such as the ones acquired by the new Sentinel-2 (S2), combine a large amount of information compared to previous satellite generations since a better trade-off in terms of spatial/spectral/temporal resolutions is guaranteed. The specific characteristic of acquiring images under overlapped orbits, offered by S2, results in: i) availability of irregularly sampled acquisitions and ii) increase of the probability to acquire cloud free images over time. This characteristic becomes relevant in the agricultural analysis, where availability of dense SITS is required to map and analyze fast working crop behaviors. In the literature, several methods exist that extract phenological parameters for agricultural analysis, but none of them is able to deal with irregularly sampled data. Thus, this paper presents an approach for derivation of cropland phenological parameters from irregularly sampled S2-SITS. Experimental results obtained on S2-SITS acquired over Barrax, Spain, confirm the effectiveness of the proposed approach.

    关键词: Sentinel-2,Non-parametric regression,NDVI SITS,Vegetation phenology,Data smoothing

    更新于2025-09-10 09:29:36