- 标题
- 摘要
- 关键词
- 实验方案
- 产品
-
[IEEE 2019 IEEE 25th International Symposium for Design and Technology in Electronic Packaging (SIITME) - Cluj-Napoca, Romania (2019.10.23-2019.10.26)] 2019 IEEE 25th International Symposium for Design and Technology in Electronic Packaging (SIITME) - Analysis of positioning errors for LED
摘要: Conventional practice for transformer dissolved gas analysis (DGA) is to use concentrations of several fault gases, with or without total dissolved combustible gas, for evaluating apparent fault severity. We suggest a simpler approach based on the normalized energy intensity (NEI), a quantity related directly to fault energy dissipated within the transformer. DGA fault severity scoring based on NEI is shown to be sensitive to all IEC fault types and to be more responsive to shifts in the relative concentrations of the fault gases than scoring based on fault gas concentrations. Instead of eight or more gas concentration limits, NEI scoring requires only two or three limits that can be empirically derived to suit local requirements for any population of mineral-oil-filled power transformers.
关键词: fault energy,fault severity,Dissolved gas analysis (DGA),normalized energy intensity (NEI),transformer,enthalpy
更新于2025-09-23 15:21:01
-
Ultra-high sensitivity temperature sensor using a fiber loop mirror based on a water-filled asymmetric two-hole fiber
摘要: Conventional practice for transformer dissolved gas analysis (DGA) is to use concentrations of several fault gases, with or without total dissolved combustible gas, for evaluating apparent fault severity. We suggest a simpler approach based on the normalized energy intensity (NEI), a quantity related directly to fault energy dissipated within the transformer. DGA fault severity scoring based on NEI is shown to be sensitive to all IEC fault types and to be more responsive to shifts in the relative concentrations of the fault gases than scoring based on fault gas concentrations. Instead of eight or more gas concentration limits, NEI scoring requires only two or three limits that can be empirically derived to suit local requirements for any population of mineral-oil-filled power transformers.
关键词: enthalpy,Dissolved gas analysis (DGA),normalized energy intensity (NEI),fault energy,transformer,fault severity
更新于2025-09-23 15:19:57
-
[IEEE 2018 43rd International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz 2018) - Nagoya (2018.9.9-2018.9.14)] 2018 43rd International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz) - Detection of Volatile Organic Compounds in Exhaled Human Breath by Millimeter- Wave/Terahertz spectroscopy
摘要: Conventional practice for transformer dissolved gas analysis (DGA) is to use concentrations of several fault gases, with or without total dissolved combustible gas, for evaluating apparent fault severity. We suggest a simpler approach based on the normalized energy intensity (NEI), a quantity related directly to fault energy dissipated within the transformer. DGA fault severity scoring based on NEI is shown to be sensitive to all IEC fault types and to be more responsive to shifts in the relative concentrations of the fault gases than scoring based on fault gas concentrations. Instead of eight or more gas concentration limits, NEI scoring requires only two or three limits that can be empirically derived to suit local requirements for any population of mineral-oil-filled power transformers.
关键词: enthalpy,Dissolved gas analysis (DGA),normalized energy intensity (NEI),fault energy,transformer,fault severity
更新于2025-09-16 10:30:52