修车大队一品楼qm论坛51一品茶楼论坛,栖凤楼品茶全国楼凤app软件 ,栖凤阁全国论坛入口,广州百花丛bhc论坛杭州百花坊妃子阁

oe1(光电查) - 科学论文

7 条数据
?? 中文(中国)
  • In situ Determination of Nitrate and Hydrogen Sulfide in the Baltic Sea Using an Ultraviolet Spectrophotometer

    摘要: Evaluating the health status of marine ecosystems becomes ever increasingly important especially against the backdrop of rising pressures from human activities. This is true especially for coastal seas such as the Baltic Sea that is surrounded by highly industrialized countries. Nutrients and pollutants such as nitrate and hydrogen sulfide, which have a major impact on ecosystem functioning, are two of several indicators for assessing the status of natural waters, and therefore key environmental of considerable interest. The frequency and the spatial coverage of the nitrate and hydrogen sulfide measurements are currently limited by the cost of the laboratory analysis and personnel. Optical in situ sensors can help to overcome this challenge by allowing reagentless and fast detection of dissolved chemical species. A chemical-free optical sensor has been used for direct and simultaneous measurements of both key parameters, and the results were compared with traditional methods. The data were collected during an observational program conducted in the Baltic Sea in February 2018. We used the OPUS UV spectral sensor, which was deployed for the first time in coastal waters, in combination with a deep-sea telemetry system to enable near-real time measurements during CTD profiling. Data processing was carried out using a multiple linear regression procedure. Measurements from both OPUS and on-board analysis were in good agreement. The results showed, that in situ UV-VIS spectrophotometry provides the capability to determine the concentration distributions of nitrate and hydrogen sulfide in the brackish waters of the Baltic Sea.

    关键词: sulfide,Baltic Sea,monitoring,hypoxia,nutrients,UV-VIS spectrophotometry

    更新于2025-09-23 15:22:29

  • Long-Term Agroecosystem Research in the Central Mississippi River Basin: Hyperspectral Remote Sensing of Reservoir Water Quality

    摘要: In situ methods for estimating water quality parameters would facilitate efforts in spatial and temporal monitoring, and optical reflectance sensing has shown potential in this regard, particularly for chlorophyll, suspended sediment, and turbidity. The objective of this research was to develop and evaluate relationships between hyperspectral remote sensing and lake water quality parameters—chlorophyll, turbidity, and N and P species. Proximal hyperspectral water reflectance data were obtained on seven sampling dates for multiple arms of Mark Twain Lake, a large man-made reservoir in northeastern Missouri. Aerial hyperspectral data were also obtained on two dates. Water samples were collected and analyzed in the laboratory for chlorophyll, nutrients, and turbidity. Previously reported reflectance indices and full-spectrum (i.e., partial least squares regression) methods were used to develop relationships between spectral and water quality data. With the exception of dissolved NH3, all measured water quality parameters were strongly related (R2 ≥ 0.7) to proximal reflectance across all measurement dates. Aerial hyperspectral sensing was somewhat less accurate than proximal sensing for the two measurement dates where both were obtained. Although full-spectrum calibrations were more accurate for chlorophyll and turbidity than results from previously reported models, those previous models performed better for an independent test set. Because extrapolation of estimation models to dates other than those used to calibrate the model greatly increased estimation error for some parameters, collection of calibration samples at each sensing date would be required for the most accurate remote sensing estimates of water quality.

    关键词: water quality,Mark Twain Lake,partial least squares regression,chlorophyll,hyperspectral remote sensing,nutrients,turbidity

    更新于2025-09-23 15:21:01

  • Supplemental intracanopy far-red radiation to red LED light improves fruit quality attributes of greenhouse tomatoes

    摘要: Off-season greenhouse tomatoes have a poor reputation relative to their in-season, field-grown counterparts. Previously, we reported that supplemental intracanopy far-red (700–800 nm, FR) radiation in addition to red (600–700 nm, R) light with light-emitting diodes (LEDs) significantly decreased fruit water content compared to R LEDs alone and high-pressure sodium (HPS) lamps, the most common supplemental lighting used in commercial greenhouses. We hypothesize that supplemental R + FR LEDs during production improves fruit quality attributes (i.e., physicochemical properties, mineral concentrations, and sensory properties) in greenhouse tomatoes compared to R LEDs and HPS lamps. Both intracanopy LED lights increased fruit yield and biomass compared to HPS lamps. R LEDs increased dry matter ratio and improved overall physicochemical proprieties such as total soluble solids (TSS), titratable acidity (TA), and pH; however, R + FR LEDs had more significant effects on all measured attributes than did R LEDs. Similarly, R LEDs increased potassium, magnesium, and calcium content in whole fruit by 30, 74, and 40% compared to HPS lamps, and the addition of FR to R LEDs further increased sodium (Na) content and concentration. Consumer sensory panelists rated higher for sensory attributes (aroma, sweetness, acidity, and texture) of R + FR LED-supplemented tomatoes on a hedonic scale compared to R LED-supplemented ones. Importantly, HPS lamp-supplemented tomatoes had the least desirable quality attributes even when compared at the same ripe stage as LED-supplemented ones. Energy use efficiency (EUE) was not different between R + FR LEDs and R LEDs, which was 5 times higher than that of HPS lamps. Our results demonstrate for the first time that fruit quality attributes of greenhouse tomatoes can be improved by supplemental intracanopy lighting with R + FR LEDs to a degree that consumer panelists could perceive the differences. Therefore, we conclude that supplemental R + FR LEDs is indispensable for improving fruit quality of greenhouse tomatoes during off-season production.

    关键词: Sensory evaluation,Electricity consumption,Hydroponics,Mineral nutrients,Solanum lycopersicum,Chromaticity,Intracanopy lighting

    更新于2025-09-16 10:30:52

  • Soil Nutrient Detection for Precision Agriculture Using Handheld Laser-Induced Breakdown Spectroscopy (LIBS) and Multivariate Regression Methods (PLSR, Lasso and GPR)

    摘要: Precision agriculture (PA) strongly relies on spatially differentiated sensor information. Handheld instruments based on laser-induced breakdown spectroscopy (LIBS) are a promising sensor technique for the in-field determination of various soil parameters. In this work, the potential of handheld LIBS for the determination of the total mass fractions of the major nutrients Ca, K, Mg, N, P and the trace nutrients Mn, Fe was evaluated. Additionally, other soil parameters, such as humus content, soil pH value and plant available P content, were determined. Since the quantification of nutrients by LIBS depends strongly on the soil matrix, various multivariate regression methods were used for calibration and prediction. These include partial least squares regression (PLSR), least absolute shrinkage and selection operator regression (Lasso), and Gaussian process regression (GPR). The best prediction results were obtained for Ca, K, Mg and Fe. The coefficients of determination obtained for other nutrients were smaller. This is due to much lower concentrations in the case of Mn, while the low number of lines and very weak intensities are the reason for the deviation of N and P. Soil parameters that are not directly related to one element, such as pH, could also be predicted. Lasso and GPR yielded slightly better results than PLSR. Additionally, several methods of data pretreatment were investigated.

    关键词: precision agriculture,LIBS,PLS regression,gaussian processes,soil,lasso,nutrients

    更新于2025-09-16 10:30:52

  • Comparison of Calibration Approaches in Laser-Induced Breakdown Spectroscopy for Proximal Soil Sensing in Precision Agriculture

    摘要: The lack of soil data, which are relevant, reliable, a?ordable, immediately available, and su?ciently detailed, is still a signi?cant challenge in precision agriculture. A promising technology for the spatial assessment of the distribution of chemical elements within ?elds, without sample preparation is laser-induced breakdown spectroscopy (LIBS). Its advantages are contrasted by a strong matrix dependence of the LIBS signal which necessitates careful data evaluation. In this work, di?erent calibration approaches for soil LIBS data are presented. The data were obtained from 139 soil samples collected on two neighboring agricultural ?elds in a quaternary landscape of northeast Germany with very variable soils. Reference analysis was carried out by inductively coupled plasma optical emission spectroscopy after wet digestion. The major nutrients Ca and Mg and the minor nutrient Fe were investigated. Three calibration strategies were compared. The ?rst method was based on univariate calibration by standard addition using just one soil sample and applying the derived calibration model to the LIBS data of both ?elds. The second univariate model derived the calibration from the reference analytics of all samples from one ?eld. The prediction is validated by LIBS data of the second ?eld. The third method is a multivariate calibration approach based on partial least squares regression (PLSR). The LIBS spectra of the ?rst ?eld are used for training. Validation was carried out by 20-fold cross-validation using the LIBS data of the ?rst ?eld and independently on the second ?eld data. The second univariate method yielded better calibration and prediction results compared to the ?rst method, since matrix e?ects were better accounted for. PLSR did not strongly improve the prediction in comparison to the second univariate method.

    关键词: laser-induced breakdown spectroscopy,soil nutrients,elemental composition,proximal soil sensing,LIBS

    更新于2025-09-12 10:27:22

  • Applications of Laser-Induced Breakdown Spectroscopy for Soil Characterization, Part II: Review of Elemental Analysis and Soil Classification

    摘要: In-field soil health assessments, including plant nutrients and toxic elements, are needed and could improve the sustainability of agriculture production. Among the available analytical techniques for these analyses, laser-induced breakdown spectroscopy (LIBS) has become one of the most promising techniques for real-time soil analysis at low cost and without the need of reagents. The first part of this two-part review (Part I, Villas-Boas et al., 2019) in this issue focused on the fundamentals of LIBS for soil analysis and its use for soil chemical and physical characterization. Our objectives in this review article (Part II) are to review (i) the main applications of LIBS in the determination of soil carbon (C), nutrients and toxic elements, spatial elemental mapping, and (ii) its use in soil classification. Traditional and more recent techniques will be compared to LIBS, considering their advantages and disadvantages. LIBS is a promising, versatile technique for detecting many elements in soil samples, requires little or no sample preparation, takes only a few seconds per sample, and has a low cost per sample compared to other techniques. However, overcoming matrix effects is a challenge for LIBS applications in soil analysis, since most studies are conducted with limited changes in the matrix. In spite of the limitation of matrix effects, a typical LIBS system has a limit of detection of 0.3, 0.6, 4, 7, 10, 18, 46, and 89 mg kg-1 for Mo, Cu, Mg, Mn, Fe, Zn, K, and Ca, respectively. LIBS holds potential for real-time in-field spatial elemental analysis of soils and practical applications in precision farming with proper calibration. This could lead to immediate diagnoses of contaminated soil and inefficient nutrient supplies and facilitate well-informed soil management, increasing agricultural production while minimizing environmental impacts.

    关键词: soil contamination,soil fertility,rhizosphere,toxic elements,spatial elemental mapping,SOM,precision agriculture,Plant nutrients,soil carbon

    更新于2025-09-11 14:15:04

  • Effect of Complex Nutrients and Repeated-Batch Cultivation of Halobacterium salinarum on enhancing Bacteriorhodopsin Production

    摘要: The extreme halophilic bacteria Halobacterium salinarum is known to produce bacteriorhodopsin (BR) protein in its purple membrane (PM) as a light-driven pump for the synthesis ATP. Its growth does not utilize simple carbon sources such as glucose, but relies on the complex carbon/nitrogen sources. The production yield of BR in the culture of H. salinarum also strongly depends on the complex nitrogen sources employed. From the various complex carbon/nitrogen sources employed in this work, tryptone rather than commonly used peptone was found to be the best complex nutrient for the growth of H. salinarum and its BR production. Bubble column photobioreactor operated in a repeated-batch mode was also employed to enhance the growth of H. salinarum by intermittent removing growth inhibitory metabolites. By employing 0.5% tryptone as carbon/nitrogen source in the culture medium, 201.8 mg/L of BR was obtained after 210 h repeated-batch cultivation which is about 50% higher than that obtained in shaker flask cultivation.

    关键词: Complex nutrients,Bacteriorhodopsin production,Photobioreactor

    更新于2025-09-10 09:29:36