修车大队一品楼qm论坛51一品茶楼论坛,栖凤楼品茶全国楼凤app软件 ,栖凤阁全国论坛入口,广州百花丛bhc论坛杭州百花坊妃子阁

oe1(光电查) - 科学论文

112 条数据
?? 中文(中国)
  • High Performance Thermally Activated Delayed Fluorescence Sensitized Organic Light‐Emitting Diodes

    摘要: Recently, organic light-emitting diodes (OLEDs) employing thermally activated delayed fluorescence (TADF) materials have aroused huge attention in both academia and industry. Compared with fluorescent and phosphorescent materials, TADF materials can theoretically capture 100 % excitons without incorporating noble metals, making them effective emitters and hosts for OLEDs simultaneously. Here, in this review, our recent works on mechanisms and materials of high performance TADF-sensitized phosphorescent (TSP) OLEDs, TADF-sensitized fluorescent (TSF) OLEDs and TADF-sensitized TADF (TST) OLEDs are summarized. Finally, we propose the outlook for the further development and application of TADF-sensitized OLEDs.

    关键词: bipolar host,Dexter energy transfer,organic light-emitting diodes,F?rster energy transfer,thermally activated delayed fluorescence

    更新于2025-09-04 15:30:14

  • Charge transport layers manage mobility and Carrier density balance in light-emitting layers influencing the operational stability of organic light emitting diodes

    摘要: Organic light emitting diodes (OLEDs) consist of several organic layers, including the charge injection layer, charge transport layer, and light emitting layer (EML). Of these layers, the charge transport layer is crucial for ensuring device longevity, but its overall effects on charge transport and corresponding device stability are poorly understood. Herein we report the factors influencing differences in lifetime between two OLEDs with different hole transporting layers (HTLs). Comprehensive electrical analysis of the materials and the devices reveals that the mobility, accumulation, trapping, and the transport path of holes in the EML are totally changed by the HTLs. The charge transport layers affect mobility and carrier density balance in the EML through the modification of the charge transport path and the energetic barrier. This results in a reduction of overbalanced polaron density, which is critical for bond dissociation in excitonic interactions. Consequently, device lifetime is increased sevenfold through modification of the HTL structure without any alteration of the EML. These results imply that the analysis of polaronic transport through impedance spectroscopy is a crucial step in determining the requisite electrical properties for charge transport layers, with a view to maximizing the operational stability of OLEDs.

    关键词: charge transport,Organic light-emitting diodes,device stability,impedance spectroscopy

    更新于2025-09-04 15:30:14