- 标题
- 摘要
- 关键词
- 实验方案
- 产品
-
Different Postharvest Responses of Fresh-Cut Sweet Peppers Related to Quality and Antioxidant and Phenylalanine Ammonia Lyase Activities during Exposure to Light-Emitting Diode Treatments
摘要: The in?uence of emitting diode (LED) treatments for 8 h per day on functional quality of three types of fresh-cut sweet peppers (yellow, red, and green) were investigated after 3, 7, 11, and 14 days postharvest storage on the market shelf at 7°C. Red LED light (660 nm, 150 μmol m?2 s?1) reduced weight loss to commercially acceptable level levels (≤2.0%) in fresh-cuts of yellow and green sweet peppers at 7 and 11 d, respectively. Blue LED light (450 nm, 100 μmol m?2 s?1) maintained weight loss acceptable for marketing in red fresh-cut sweet peppers up to 11 d. Highest marketability with minimum changes in color di?erence (?E) and functional compounds (total phenols, ascorbic acid content, and antioxidant activity) were obtained in yellow and green sweet pepper fresh-cuts exposed to red LED light up to 7 and 11 d, respectively, and for red sweet pepper fresh-cuts exposed to blue LED light for 11 d. Red LED light maintained the highest concentrations of β carotene, chlorophyll, and lycopene in yellow, green, and red sweet pepper fresh-cuts up to 7 d. Similarly, blue LED light showed the highest increase in lycopene concentrations for red sweet pepper fresh-cuts up to 7 d. Red LED (yellow and green sweet peppers) and blue LED (red sweet pepper) lights maintained phenolic compounds by increasing phenylalanine ammonia lyase activity. Thus, the results indicate a new approach to improve functional compounds of di?erent types of fresh-cut sweet pepper.
关键词: postharvest quality,antioxidant activity,bioactive compounds,photo technology,Capsicum annuum L.,shelf life
更新于2025-09-11 14:15:04
-
Enhanced photocatalytic carbon dioxide reforming of methane to fuels over nickel and montmorillonite supported TiO2 nanocomposite using monolith photoreactor
摘要: Conversion of carbon dioxide (CO2) and methane (CH4) to fuels using photo-technology is a cleaner pathway compared to thermal reforming, since its uses only light irradiations, while producing valuable chemicals. In this study, structured nickel (Ni) and montmorillonite (MMT) supported TiO2 composite, synthesized by a sol-gel method, was tested for photocatalytic reduction of CO2 using fixed-bed and monolith photoreactors. The performance of structured nanocatalyst was evaluated using CO2-H2 system via photocatalytic reverse water gas shift (RWGS) reaction and CO2-CH4 system via photocatalytic dry reforming of methane (DRM). Using photocatalytic RWGS, CO was detected as the main products, while the performance of Ni-MMT/TiO2 composite was expressively higher than using MMT/TiO2 and TiO2 catalysts. This was obviously due to larger surface area by MMT dispersion and hindered charges recombination rate by Ni. Similarly, using DRM, H2 and CO were the main products, while their selectivity was greatly dependent on the initial CH4/CO2 molar feed ratios. At a lower CH4/CO2 ratio, more CO was produced, while a higher feed ratio promoted H2 production. This shows, composite catalyst was more favorable for CO2 adsorption, while CH4 was competitively adsorbed during photo-catalysis process. Comparatively, Ni-MMT/TiO2 catalyst reveals higher photo-activity and selectivity in a monolith photoreactor than using fixed-bed reactor under the same operating conditions. This enhanced photoactivity was due to higher photonic flux with enlarged active surface area due to monolithic support and efficient sorption process. The stability of Ni/TiO2 dispersed MMT for CO and H2 production via DRM process sustained in cyclic runs using monolithic support. Hence, using Ni/MMT modified TiO2 catalyst and monolith photoreactor, CO2 and CH4 can efficiently be converted to renewable fuels under light irradiations and would be a great benefit to the environment.
关键词: Photo-technology,Ni/TiO2,Dry reforming of CH4,Monolith photoreactor,Montmorillonite,CO2 reduction
更新于2025-09-04 15:30:14