修车大队一品楼qm论坛51一品茶楼论坛,栖凤楼品茶全国楼凤app软件 ,栖凤阁全国论坛入口,广州百花丛bhc论坛杭州百花坊妃子阁

oe1(光电查) - 科学论文

1 条数据
?? 中文(中国)
  • Effect of Electron-Acceptor Content on the Efficiency of Regioregular Double-Cable Thiophene Copolymers in Single-Material Organic Solar Cells

    摘要: Three regioregular thiophenic copolymers, characterized by a bromine atom or a C60-fullerene group at different molar ratios at the end of a decamethylenic plastifying side chain, have been successfully synthesized using a straightforward postpolymerization functionalization procedure based on a Grignard coupling reaction. Owing to their good solubility in common organic solvents, the products were fully characterized using chromatographic, spectroscopic, thermal, and morphological techniques and used as single materials in the photoactive layers of organic solar cells. The photoconversion efficiencies obtained with copolymers were compared with those of a reference cell prepared using a physical blend of the precursor homopolymer and [6,6]-phenyl-C61-butyric acid methyl ester. The best results were obtained with COP2, the copolymer with a 21% molar content of C60-functionalized side chains. The use of the double-cable polymer made possible an enhanced control on the nanomorphology of the active blend, thus reducing phase-segregation phenomena as well as the macroscale separation between the electron-acceptor and -donor components, yielding a power conversion efficiency higher than that of the reference cell (4.05 vs 3.68%). Moreover, the presence of the halogen group was exploited for the photo-cross-linking of the active layer immediately after the thermal annealing procedure. The cross-linked samples showed an increased stability over time, leading to good efficiencies even after 120 h of accelerated aging: this was a key feature for the widespread practical applicability of the prepared devices.

    关键词: photo-cross-linking,C60-fullerene,double-cable polymer,thermal annealing,regioregular thiophenic copolymers,Grignard coupling reaction,organic solar cells,photoconversion efficiencies

    更新于2025-09-11 14:15:04