修车大队一品楼qm论坛51一品茶楼论坛,栖凤楼品茶全国楼凤app软件 ,栖凤阁全国论坛入口,广州百花丛bhc论坛杭州百花坊妃子阁

oe1(光电查) - 科学论文

240 条数据
?? 中文(中国)
  • Optimal synthesis of antimony-doped cuprous oxides for photoelectrochemical applications

    摘要: We investigated the influence of Sb dopant concentration on the structural, electrical, and photoelectrochemical properties of the photocathode cuprous oxide (Cu2O) thin films. The photoabsorber p-type Cu2O films were prepared by electrodeposition in ionic electrolytes including copper sulfate and antimony sulfate at 333 K and pH=10. The small amount of Sb doping contributes to the fast Cu ion transport to the substrate and ion consumption; consequently, the p-type Cu2O with high crystalline quality can be reproducibly synthesized with high electrical stability. Among the various samples, the mole fraction of c(Sb)/[c(Cu)+c(Sb)] = 0.75 mol % exhibits the best electrical resistivity and improved transparency in the infrared region, which is involved with the fast overlap of the nuclei crystals under 5 nm from the high nuclei density. Additionally, the post-thermal annealed Sb-doped Cu2O sample reveals an enhanced photocurrent of ~0.65 mA/cm2 vs. RHE (reversible hydrogen electrode) without metal catalysts.

    关键词: Preferred orientation,Post annealing,Antimony doping,Photoelectrochemical cell,Cuprous oxide

    更新于2025-09-23 15:23:52

  • Ti3C2 MXene nanoparticles modified metal oxide composites for enhanced photoelectrochemical water splitting

    摘要: MXene, an emerging family of two-dimensional (2-D) material, has shown outstanding electronic properties and promise for the applications on energy storage and conversion. In this paper, Ti3C2 MXene nanoparticles were synthesized by a facile solvent exfoliation method and used to construct metal oxide/Ti3C2 heterostructures. When these heterostructures were used as photoanodes for photoelectrochemical water splitting, significantly improved photoactivity and stability were achieved. Compared to pristine TiO2, 6-fold enhanced applied bias photon-to-current efficiency (ABPE) was achieved for TiO2/Ti3C2 heterostructures. According to the electron spin resonance, electrical impedance spectroscopic and Mott-Schottky measurements, the enhanced photoelectrochemical performance was ascribed to the presence of Ti3C2 as oxygen evolution cocatalysts and the strong interfacial interactions between metal oxide and Ti3C2. Therefore, our research provides a new way to design MXene-based heterostructures for solar energy conversion applications.

    关键词: Metal oxide,MXene,Heterostructured photoanodes,Photoelectrochemical,Water splitting

    更新于2025-09-23 15:23:52

  • A review on photoelectrochemical hydrogen production systems: Challenges and future directions

    摘要: Water photolysis is a fundamental concept in which solar-driven water splitting is utilized to generate renewable hydrogen fuel using semiconductor-based electrochemical systems. The engineering design principles for each system configuration, including single, dual/tandem photoelectrodes, tandem photoelectrochemical-photovoltaic, and multi-junction designs are reviewed. Modeling and numerical simulation of photoelectrochemical processes based on up-to-date multi-scale analysis are presented and discussed. In addition, the achievements made in semiconductor photoelectrode materials and the rational engineering methods needed to improve the solar to hydrogen efficiency are demonstrated. Furthermore, some key accomplishments in different aspects, such as electron-hole recombination, stability, photocorrosion, energy band gap, and photocurrent density are discussed. Moreover, key points on the challenges, opportunities and future directions towards commercialization of viable photoelectrochemical reactors are discussed.

    关键词: Semiconductor materials,Photoelectrochemical process,Hydrogen production,Solar energy

    更新于2025-09-23 15:23:52

  • Aging of a Vanadium Precursor Solution: Influencing Material Properties and Photoelectrochemical Water Oxidation Performance of Solution-Processed BiVO <sub/>4</sub> Photoanodes

    摘要: Metal–organic decomposition is an easy way to fabricate BiVO4 (BVO) photoanodes; however, it often experiences a reproducibility issue. Here, the aging duration of a vanadium precursor solution, vanadyl acetylacetonate in methanol, is identified as a factor that profoundly affects reproducibility. Substantial changes in structural, optical, and electrical properties of BVO films are observed upon varying aging time of vanadium precursor solutions, which subsequently impacts photoelectrochemical (PEC) water oxidation and sulfite oxidation reactions. With the optimum number of aging days (3 d), some deficiency of oxygen is observed, which is accompanied by an increase in carrier concentration and a reduced charge transfer resistance in the PEC device, which produces the highest PEC performance that is comparable to the state-of-the-art undoped BVO photoanodes. The findings point to the importance of understanding solution chemistry and demonstrate that utilization of the understanding of fine adjustment of the composition of BVO films can produce highly reproducible and efficient BiVO4 photoanodes.

    关键词: solution aging,metal–organic decomposition,bismuth vanadate,chemical composition,photoelectrochemical water splitting

    更新于2025-09-23 15:23:52

  • Effect of Mo doping and NiFe-LDH cocatalyst on PEC water oxidation efficiency

    摘要: The NiFe-layered double hydroxide (LDH) nanosheets were decorated on the surface of doped BiVO4 to structure an integrating photoanode for improving solar photoelectrochemical (PEC) water splitting efficiency, which is a dynamic research topic to solve the energy crisis and remit environmental pollution caused by fossil fuel combustion. The fabricated photoanode exhibits rapid response to visible light, enhances photocurrent density and shows significant cathodic shift compared to BiVO4. Moreover, the measured incident photon-to-current efficiency (IPCE) of the photoanode is comparable to that reported in the literature. The amount of evolution oxygen was measured and the faradaic efficiency produced oxygen was also obtained by comparing the theoretical calculation value. The enhancement is attributed to the increase of the carrier density, the effective separation of photogenerated electron-hole and consuming of the photogenerated holes accumulated at the electrode surface, which has been confirmed by electrochemical impedance spectra (EIS) and the intensity modulated photocurrent spectra (IMPS). The work may offer a promising method for designing a high efficiency and low-cost photoanode.

    关键词: NiFe-layered double hydroxides.,BiVO4,Mo-doping,Photoelectrochemical water splitting

    更新于2025-09-23 15:23:52

  • Energy diagram analysis of photoelectrochemical water splitting process

    摘要: Photoelectrochemical (PEC) water splitting process is thoroughly revisited based on the energy diagram to elucidate the experimental observations. The TiO2 nanorod structure is studied as the model system for the photoanode of the PEC cell due to its stability in both acidic and basic solutions. The photocurrents with the external bias are examined under the various electrolytes of H2SO4, NaCl, and NaOH. The energy diagrams of the whole PEC system related to the water splitting process are interactively constructed in three-electrode configuration with the vacuum level as the common reference. Electrode potentials and photocurrents measured with the external bias in dark and under light are systematically correlated with the energy diagram of the PEC system. The pH dependent flat-band potential is explained by applying the pH dependent Helmholtz layer potential at the interface. In addition, the distribution of the applied potential in the PEC system during the water splitting process is understood by in-depth understanding of the energy band diagram.

    关键词: band analysis,TiO2 nanorod,photoelectrochemical water splitting

    更新于2025-09-23 15:23:52

  • A cathodic photovoltammetric sensor for chloramphenicol based on BiOI and graphene nanocomposites

    摘要: A visible light-activated photocathode fabricated with p-type semiconductor bismuth oxyiodide (BiOI) and graphene (G) was employed to investigate the photovoltammetric behavior of chloramphenicol (CAP). The result indicated that the voltammetric reduction peak of CAP increased to a limiting current platform under photoirradiation, owing to photoelectrocatalytic reduction of CAP on the BiOI-G photocathode. As a result, the cathodic photovoltammogram became sigmoidal in shape. Furthermore, the influences of graphene content in BiOI-G composites, scan rate and light intensity on the photovoltammetric behavior of CAP on the BiOI-G photocathode were systematically investigated. Based on such a BiOI-G electrode, a cathodic photovoltammetric sensor for CAP was proposed, which exhibited a current response linearly proportional to CAP concentration in the range of 0.5 to 50 μmol L-1, with a detection limit (3S/N) of 0.14 μmol L-1. Moreover, the photovoltammetric sensor displayed good reproducibility and high stability. The applicability of the proposed sensor was demonstrated by determining CAP in eye drop and environmental water samples.

    关键词: Photovoltammetry,Photoelectrochemical sensor,Chloramphenicol,BiOI,Graphene

    更新于2025-09-23 15:23:52

  • ZnxCd1-xSe nanoparticles decorated ordered mesoporous ZnO inverse opal with binder-free heterojunction interfaces for highly efficient photoelectrochemical water splitting

    摘要: Well-defined porous heteronanostructures with broad light absorption range and efficient charge transfer are the key challenges towards developing efficient photoanodes for photoelectrochemical (PEC) water splitting. Herein, we reported a facile template and continuous ion exchange method to fabricate three-dimensional ordered mesoporous (3DOM) ZnO/ZnxCd1-xSe inverse opal with binder-free heterojunction interfaces on F-doped SnO2 glass. The heteroepitaxial growth of ZnxCd1-xSe shell layer on ZnO inverse opal skeleton surface provided favorable type-II band alignment, low interfacial resistance, and high visible light absorption. As expected, the optimized 3DOM ZnO/ZnxCd1-xSe inverse opal achieved a significant saturated photocurrent density of 24.76 mA cm-2 at 1.23 V versus a reversible hydrogen electrode (RHE) in 0.25 M Na2S and 0.35 M Na2SO3 aqueous solution under AM 1.5 G simulated solar light irradiation (100 mW cm-2), which is 25 times higher than that of the pristine ZnO (0.99 mA cm-2 at 1.23 V versus RHE) photoanode. The maximum photoconversion efficiency reached 10.64% for the optimized 3DOM ZnO/ZnxCd1-xSe inverse opal at an applied potential of 0.52 V versus RHE, an about 22.63 times increase relative to that of the pristine ZnO inverse opal (0.47% at 0.61 V versus RHE). In addition, the photostability of the optimized 3DOM ZnO/ZnxCd1-xSe inverse opal photoanode was also greatly improved in the electrolyte solution, 82.6% initial value was maintained even after 3000 s continuous light illumination without any protective coating layer. Such prominent PEC performances of the as-prepared 3DOM ZnO/ZnxCd1-xSe inverse opal can be ascribed to the improved visible light harvesting and enhanced charge separation/collection efficiency. This work provides a fundamental insight to design the efficient photoanode for high performance water splitting.

    关键词: Heteroepitaxial growth,ZnO/ZnxCd1-xSe,Inverse opal,Photoelectrochemical water splitting,Heterojunction interface

    更新于2025-09-23 15:23:52

  • Enhanced photoelectrochemical performance of CdO-TiO2 nanotubes prepared by direct impregnation

    摘要: A direct impregnation technique was adopted to prepare a series of CdO-TiO2 nanotubes. Self-organized TiO2 nanotubes were prepared using an optimized two-step anodization process. The morphology, crystallinity, elemental composition, and photoelectrochemical properties of the CdO-TiO2 nanotubes were characterized by scanning electron microscopy (SEM), transimission electron microscopy (TEM), UV-Vis diffuse reflection spectra (UV-Vis DRS), X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD) and photoelectric cell (PEC) measurements. At lower Cd(NO3)2 concentration, no obvious CdO crystalline particle formed on the TiO2 NTbs surface, while the EDS and XPS measurements shows the increasing doping amount of CdO as the Cd(NO3)2 concentration increasing. At a relatively high precursor concentration (800 mM), the formation of particle clusters and nanocrystals on the surface of the TiO2 nanotubes could be easily detected, and the sample presented XRD diffraction peaks indicative of CdTiO3. Meanwhile, the Ti 2p XPS spectra displayed an obvious shift (~0.3 eV), which could be attributed to the change in the lattice structure. A negative shift in the flatband potential (Vfb) and a decrease in charge carrier density were observed after doping. The maximum incident photon to charge carrier efficiency (IPCE) value calculated for the CdO-TiO2 nanotubes was 10.16%, much higher than that of pure TiO2 nanotubes.

    关键词: Cadmium oxide,Photoelectrochemical,Impregnation-Calcination,TiO2 nanotubes

    更新于2025-09-23 15:23:52

  • In-situ approach to fabricate BiOI photocathode with oxygen vacancies: Understanding the N2 reduced behavior in photoelectrochemical system

    摘要: The adsorption and activation of N2 on the catalyst surface is a major problem in the process of photoelectrochemical (PEC) N2 reduction. Herein, we report a strategy to fabricate intrinsic BiOI (I-BiOI) photocathode with oxygen vacancies (OVs) (R-BiOI) by a facile in-situ method, and the R-BiOI was successfully selected as the model matrix for understanding the role of OVs in the PEC N2 reduction system for the first time. The correlation between carrier concentration/Lewis-base/active sites and OVs was in-depth demonstrated by Mott-Schottky plots and photoelectrochemical impedance spectroscopy (PEIS) results, meanwhile the Linear-sweep-voltammetry (LSV) data further confirmed the selectivity for active N2 over R-BiOI photocathode. The tandem built from BiVO4 photoanode and R-BiOI photocathode presented the desirable production rate of ammonia at about 1.4 mmol/m2/h, which is 1.3 and 2.9 times than that of I-BiOI (1.1 mmol/m2/h) and Pt (0.48 mmol/m2/h). Our findings have initially developed the proposed mechanism for the behavior of solar-electron-ammonia conversion and offered an alternative potential route for green N2 fixation.

    关键词: Active sites,Lewis-base,Oxygen vacancies,BiOI,Photoelectrochemical (PEC) N2 fixation

    更新于2025-09-23 15:23:52