修车大队一品楼qm论坛51一品茶楼论坛,栖凤楼品茶全国楼凤app软件 ,栖凤阁全国论坛入口,广州百花丛bhc论坛杭州百花坊妃子阁

oe1(光电查) - 科学论文

过滤筛选

出版时间
  • 2019
  • 2018
  • 2015
研究主题
  • Photovoltaic system
  • photovoltaic generation
  • voltage regulation
  • battery storage
  • low-voltage networks
  • charge – discharge energy efficiency
  • Lithium-ion battery
  • degradation diagnosis
  • photovoltaic surplus energy
  • working electric vehicle
应用领域
  • Electrical Engineering and Automation
  • Optoelectronic Information Materials and Devices
  • Optoelectronic Information Science and Engineering
机构单位
  • Institut Teknologi Sepuluh Nopember- ITS
  • National technical University “Kharkiv Polytechnic Institute”
  • State Grid Shanxi Electric Power Research Institute
  • Xi’an Jiaotong University
  • Zhengzhou University
  • Tsinghua University
  • Kuban State Agrarian University
  • Cochin University College of Engineering
  • University of Calgary
  • Ritsumeikan University
1598 条数据
?? 中文(中国)
  • Physics of Energy Conversion () || 10. Photovoltaic energy conversion

    摘要: In a photovoltaic device, solar energy is converted into electricity along a path very different from the one taken in a solarthermal power plant. Here, in a first step the energy of the solar photons is converted into chemical energy in a solid state absorber. This means that the absorber is brought into an electronically excited state involving a reconfiguration of its charge carriers by the generation of electron/hole (e?/h+)-pairs, i.e. by the following reaction: Ground state + ?? → e? + h+. Here, ?? represents a photon with sufficient energy to bring an electron to the excited state. The chemical energy of the charge carrier ensembles in the conduction and valence bands is then converted into electrical energy by spatially separating the e?/h+-pairs via electrical contacts of the absorber which are electron or hole selective, respectively. In general such selective contacts can only be realized by a jump in the material properties between the two contacts, an example for this being a pn-junction. Since under illumination electrons and holes have different electrochemical potentials in the absorber material, this separation leads to a voltage drop between the contacts selective for the different charge carrier types. It is thus the selectivity of the contacts that introduces the built-in asymmetry into the solar cell, making it a usable voltage source (see Section 5.2). This basic working principle is true for all types of solar cells, ranging from conventional solar cells built from crystalline silicon (c-Si) over thin film solar cells fabricated from different materials such as, e.g. Cu(In,Ga)Se2 (CIGS) to organic or dye sensitized solar cells, and is schematically shown in Figure 10.1.

    关键词: electricity,solid state absorber,solar energy,photovoltaic,pn-junction,dye sensitized solar cells,organic solar cells,CIGS,thin film solar cells,crystalline silicon,electron/hole pairs

    更新于2025-09-11 14:15:04

  • Microwave-Assisted Synthesis of High-Energy Faceted TiO2 Nanocrystals Derived from Exfoliated Porous Metatitanic Acid Nanosheets with Improved Photocatalytic and Photovoltaic Performance

    摘要: A facile one-pot microwave-assisted hydrothermal synthesis of rutile TiO2 quadrangular prisms with dominant {110} facets, anatase TiO2 nanorods and square nanoprisms with co-exposed {101}/[111] facets, anatase TiO2 nanorhombuses with co-exposed {101}/{010} facets, and anatase TiO2 nanospindles with dominant {010} facets were reported through the use of exfoliated porous metatitanic acid nanosheets as a precursor. The nanostructures and the formation reaction mechanism of the obtained rutile and anatase TiO2 nanocrystals from the delaminated nanosheets were investigated. The transformation from the exfoliated metatitanic nanosheets with distorted hexagonal cavities to TiO2 nanocrystals involved a dissolution reaction of the nanosheets, nucleation of the primary [TiO6]8? monomers, and the growth of rutile-type and anatase-type TiO2 nuclei during the microwave-assisted hydrothermal reaction. In addition, the photocatalytic activities of the as-prepared anatase nanocrystals were evaluated through the photocatalytic degradation of typical carcinogenic and mutagenic methyl orange (MO) under UV-light irradiation at a normal temperature and pressure. Furthermore, the dye-sensitized solar cell (DSSC) performance of the synthesized anatase TiO2 nanocrystals with various morphologies and crystal facets was also characterized. The {101}/[111]-faceted pH2.5-T175 nanocrystal showed the highest photocatalytic and photovoltaic performance compared to the other TiO2 samples, which could be attributed mainly to its minimum particle size and maximum specific surface area.

    关键词: high-energy facets,photocatalytic activity,photovoltaic performance,anatase TiO2 nanocrystals

    更新于2025-09-11 14:15:04

  • A Quarterthiophene-Based Dye as an Efficient Interface Modifier for Hybrid Titanium Dioxide/Poly(3-hexylthiophene)(P3HT) Solar Cells

    摘要: This work focused on studying the in?uence of dyes, including a thiophene derivative dye with a cyanoacrylic acid group ((E)-2-cyano-3-(3,3,5,5-trihexyl-[2,2:5,2:5,2-quaterthiophene]-5-yl) acrylicacid)(4T), on the photovoltaic performance of titanium dioxide (TiO2)/poly(3-hexylthiophene)(P3HT) solar cells. The insertion of dye at the interface improved the e?ciency regardless of the dye used. However, 4T dye signi?cantly improved the e?ciency by a factor of three when compared to the corresponding control. This improvement is mainly due to an increase in short circuit current density (JSC), which is consistent with higher hole-mobility reported in TiO2/P3HT nanocomposite with 4T dye. Optical absorption data further revealed that 4T extended the spectral response of the TiO2/P3HT nanocomposite, which could also enhance the JSC. The reduced dark current upon dye insertion ensured the carrier recombination was controlled at the interface. This, in turn, increased the open circuit voltage. An optimized hybrid TiO2/P3HT device with 4T dye as an interface modi?er showed an average e?ciency of over 2% under-simulated irradiation of 100 mWcm?2 (1 sun) with an Air Mass 1.5 ?lter.

    关键词: e?ciency,interface modi?er,photovoltaic,poly(3-hexylthiophene),oligothiophene dye,quantum e?ciency,titanium dioxide,absorption,polymers,hybrid solar cells

    更新于2025-09-11 14:15:04

  • Molecular origin of photostability for fluorene-based donor–acceptor type photovoltaic polymers

    摘要: Quantitative analyses of photodegradation for three fluorene-based photovoltaic polymers, poly[2,7-(9,9-dioctyl-fluorene)-alt-5,5-(4’,7’-di-2-thienyl-2’,1’,3’-benzothiadiazole)] (APFO3), polyfluorene (PFO), and poly(9,9-dioctylfluorene-alt-benzothiadiazole) (F8BT) were conducted to understand the molecular origin of photostability for polymers. The Fourier transform infrared (FT-IR) spectra of polymer thin-films varied by irradiating white light at 100 mW?cm-2 irrespective of their molecular architectures. The absorption peaks corresponding to alkyl side chains in a fluorene unit decreased, whereas those for polymers that did not comprise carbonyl groups increased. This spectral variation indicates that alkyl side chains in the fluorene unit decompose when the molecular structure of fluorene varies to that of fluorenone. The reaction rate constant of formation of C=O bond for APFO3 was 1.64×10-5 s-1, lower than PFO (7.59×10-5 s-1) and F8BT (2.64×10-5 s-1), under light irradiation at 30 ?C. The photostability of the polymers improves by designing a donor–acceptor type molecular architecture—incorporating photostable electron deficient benzothiadiazole units with photo-unstable fluorene units.

    关键词: fluorene-based,photostability,FT-IR,donor–acceptor,UV-vis,photovoltaic polymers

    更新于2025-09-11 14:15:04

  • New Techniques for Sizing Solar Photovoltaic Panels for Environment Monitoring Sensor Nodes

    摘要: The development of perpetually powered sensor networks for environment monitoring to avoid periodic battery replacement and to ensure the network never goes offline due to power is one of the primary goals in sensor network design. In many environment-monitoring applications, the sensor network is internet-connected, making the energy budget high because data must be transmitted regularly to a server through an uplink device. Determining the optimal solar panel size that will deliver sufficient energy to the sensor network in a given period is therefore of primary importance. The traditional technique of sizing solar photovoltaic (PV) panels is based on balancing the solar panel power rating and expected hours of radiation in a given area with the load wattage and hours of use. However, factors like the azimuth and tilt angles of alignment, operating temperature, dust accumulation, intermittent sunshine and seasonal effects influencing the duration of maximum radiation in a day all reduce the expected power output and cause this technique to greatly underestimate the required solar panel size. The majority of these factors are outside the scope of human control and must be therefore be budgeted for using an error factor. Determining of the magnitude of the error factor to use is crucial to prevent not only undersizing the panel, but also to prevent oversizing which will increase the cost of operationalizing the sensor network. But modeling error factors when there are many parameters to consider is not trivial. Equally importantly, the concept of microclimate may cause any two nodes of similar specifications to have very different power performance when located in the same climatological zone. There is then a need to change the solar panel sizing philosophy for these systems. This paper proposed the use of actual observed solar radiation and battery state of charge data in a realistic WSN-based automatic weather station in an outdoor uncontrolled environment. We then develop two mathematical models that can be used to determine the required minimum solar PV wattage that will ensure that the battery stays above a given threshold given the weather patterns of the area. The predicted and observed battery state of charge values have correlations of 0.844 and 0.935 and exhibit Root Mean Square Errors of 9.2% and 1.7% for the discrete calculus model and the transfer function estimation (TFE) model respectively. The results show that the models perform very well in state of charge prediction and subsequent determination of ideal solar panel rating for sensor networks used in environment monitoring applications.

    关键词: battery state of charge,environment monitoring,solar radiation,discrete calculus model,transfer function estimation,solar photovoltaic panels,sensor nodes

    更新于2025-09-11 14:15:04

  • Performance evaluation of building-integrated photovoltaic systems for residential buildings in southern India

    摘要: The integration of photovoltaic modules into the building structure is a challenging task with respect to power generation of PV module and the effect of incident solar radiation. The performance of building integrated photovoltaic (BIPV) modules varies depending upon the orientation and azimuth angle of the building. In this work, the year-round performance and economic feasibility analysis of grid-connected building-integrated photovoltaic (GBIPV) modules is reported for the hot and humid climatic regional condition at Kovilpatti (9°10'00"N, 77°52'00"E), Tamil Nadu, India. The appropriate mounting structures are provided, to experimentally simulate the performance of GBIPV modules at various orientations and inclination angles (0° to 90°). The result indicated that the optimum orientation for installation of BIPV modules in the fa?ade and walls is found to be east while that for a pitched roof south orientation is recommended. The overall average annual performance ratio, capacity utilisation factor, array capture loss and system losses are found to be 0.83, 23%, 0.07 (h/day), and 0.17 (h/day), respectively. In addition, the economic feasibility of grid connected PV system for residential buildings in Tamil Nadu, India is analysed using HOMER by incorporating both a net metering process and electricity tariff.

    关键词: BIPV,performance ratio,HOMER,net metering,grid-connected,Building integrated photovoltaic

    更新于2025-09-11 14:15:04

  • The effect of indium doping on photovoltaic properties of chemically synthesized zinc oxide thin-film electrodes

    摘要: Photovoltaic (PV) performance of chemically synthesized indium-doped zinc oxide (IZO) nanorod electrodes has been investigated by photocurrent density-voltage (J-V). The indium (In) concentration was varied from 2 to 6 at.% for IZO. The J-V measurements as performed under a dark condition and a simulated white light of 80 mW/cm2 confirmed increase in PV performance with the IZO electrodes, making a peak with the 4 at.% In concentration. The investigated properties of the synthesized In-doped ZnO nanorod electrodes (structural and optical) strongly agreed with the PV results and well support the enhanced PV performance of the IZO electrodes. This clearly indicates that IZO electrodes would be preferred against undoped ones in PV solar cell application.

    关键词: IZO electrodes,Photovoltaic performance,In concentration,Wurtzite crystal structure,ZnO nanorods

    更新于2025-09-11 14:15:04

  • Influence of Temperature on the Output Parameters of a Photovoltaic Module Based on Amorphous Hydrogenated Silicon

    摘要: The light load current-voltage characteristics of a solar photovoltaic module based on amorphous hydrogenated silicon have been studied at different temperatures under conditions of natural solar illumination (Рrad = 870 ± 10 W/m2). It has been found that the temperature dependence of the photocurrent has two slopes due to a change in the generation–recombination mechanism. The increase in the value of the short-circuit current with increasing temperature of the photovoltaic module is explained by a rise in the drift lengths of minority charge carriers due to an increase in the lifetime of minority carriers. In this case, the quasi Fermi level shifts to the conduction band, and the concentration of recombination centers decreases due to recharging of defective levels (D0 → D–). The decrease in the value of the open-circuit voltage with increasing temperature is explained by the exponential increase in the reverse saturation current and decrease in the band gap of the semiconductor. It has been found that the fill factor (FF) of the current–voltage characteristics decreases with increasing temperature, most likely due to a decrease in the shunt resistance (Rsh), which connects parallel to the p–n junction, consists of parasitic resistances, and leads to an increase in leakage currents. The temperature coefficient of the maximum output power has a positive value in the range of 320–332 K, i.e., increases with temperature. It has been revealed that the values of shunt and series resistance decrease with increasing temperature. A large loss of power output (up to 19%) has been observed on the series resistance of the solar photovoltaic module in the temperature range of 320–332 K. With increasing temperature, the loss of generated power on the shunt resistance grows sublinearly. The efficiency of the solar photovoltaic module decreases from 7.95 to 7.65% and has a coefficient of temperature dependence of efficiency, which decreases from ≈ –0.029%/K to ≈ –0.046%/K.

    关键词: shunt resistance,series resistance,efficiency,temperature,open-circuit voltage,fill factor,solar photovoltaic module,amorphous hydrogenated silicon,short-circuit current

    更新于2025-09-11 14:15:04

  • Robust Direct Adaptive Controller Design for Photovoltaic Maximum Power Point Tracking Application

    摘要: Tracking the maximum output power of a photovoltaic (PV) cell is an important problem to harvest more energy at di?erent weather and load conditions. This paper presents the design and simulation of a robust direct adaptive controller (RDAC) for maximum power point tracking (MPPT) device based on boost converter topology. A mathematical model is developed, and a suitable RDAC is designed for MPPT device, and simulations are performed using MATLAB/Simulink to verify the controller’s robustness at varying operating conditions. The real-time irradiance and temperature data are used on an hourly basis to test the suggested MPPT adaptive controller for a typical sunny day in summer and winter. The simulation results show that the RDAC performs excellent tracking under varying conditions such as irradiance, temperature, load, boost converter inductance, and capacitance.

    关键词: adaptive control,boost converter,MPPT,photovoltaic,simulink,compensator design

    更新于2025-09-11 14:15:04

  • Imaging and micro-structural characterization of moisture induced degradation in crystalline silicon photovoltaic modules

    摘要: Moisture induced degradation in photovoltaic (PV) modules operate via multiple chemical mechanisms commonly identi?ed by the sole use of destructive techniques. However, in such cases, e?ective use of spatial imaging techniques can aid identi?cation of certain operating mechanisms on the basis of degradation pattern characteristics. This paper presents an approach of imaging the e?ects of moisture induced degradation in crystalline silicon PV modules under damp heat (DH) test conditions using electroluminescence (EL) and dark lock-in-thermography (DLIT) imaging techniques. The a?ected regions were extracted for identi?cation of degradation products using scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS) micro-structural characterization technique. Consequently, combination of both imaging and micro-structural characterization techniques were used to propose the mechanism of degradation. The presented approach was instrumental in identi?cation of the e?ects of moisture induced degradation through imaging techniques, moreover the investigation also provided insights in this ?eld of work. The results present signature image patterns for identi?cation and di?erentiation of dominant chemical mechanisms under moisture induced conditions viz. tin migration at the ?nger-wafer interface and formation of silver oxide at cell cracks and edges. The ribbon interconnects was identi?ed as an active site for deposition of oxides from solder material, and aluminium electrode in presence of water as an electrolyte. Moreover, loss in interfacial adhesion between wafer, encapsulant and ?nger. In addition, material quality, manufacturing distinctions, and module design parameters seem to be responsible for observing di?erent operating mechanisms. Also, the obtained insights were applied for investigation of a 20-year-old aged PV module.

    关键词: Chemical degradation,Damp heat test,Photovoltaic modules,Electroluminescence imaging,Dark lock-in thermography imaging,Moisture induced degradation

    更新于2025-09-11 14:15:04