- 标题
- 摘要
- 关键词
- 实验方案
- 产品
-
Study of solar irradiance and performance analysis of submerged monocrystalline and polycrystalline solar cells
摘要: Underwater photovoltaic (PV) systems supported with modern-day technology can lead to possible solutions for the lack of long-term power sources in marine electronics, navy corps, and many other remotely operated underwater power systems. Currently, most of these systems are powered by conventional batteries, which are bulky, costly, and require periodic maintenance and replacement. Harnessing the underwater Solar energy by using Solar PV cells is simple, reliable, and leads to tremendous advantageous as water itself provides cooling, cleaning, and avoid challenges due to land constraints. The present work encompasses an experimental study on Solar radiation in water and its changes with varying water conditions. Accordingly, the performance of monocrystalline and polycrystalline silicon solar cells with different submerged water conditions and water depths up to 20 cm has been studied. Most importantly, these studies have been carried out with different types of water conditions, consisting of salinity, bacteria, algae, and other water impurities. These investigation results manifest that the percentage decrease of maximum power output in monocrystalline and polycrystalline Solar cells is 65.85% and 62.55%, respectively, in the case of ocean water conditions, whereas in deionized (DI) water conditions, it is 63.06% and 60.72% up to 20 cm. Such results conclude that valuable amount of Solar energy is can be explored underwater. These experimental studies pave the way to explore further to utilize Solar PV cells efficiently in underwater conditions.
关键词: monocrystalline Solar cell,underwater Solar radiation,photovoltaic (PV) technology,PDMS (polydimethylsiloxane),water salinity,polycrystalline Solar cell
更新于2025-09-23 15:21:01
-
Performance Analysis of Submerged Polycrystalline Photovoltaic Cell in Varying Water Conditions
摘要: Exploring the underwater solar energy by solar photovoltaic (PV) cells leads to a huge advantage by utilizing the humongous space of water covered by the earth’s surface. Even though the amount of solar radiation decreases with the depth of the water, water provides sustainable cooling and cleaning for solar PV cells underwater. There are many challenges and constraints to develop solar PV cells underwater because they are mostly calibrated and amenable to space, dryland, terrestrial, etc., and the solar spectrum is prone to get narrower with the depth of the water. The implementation of solar PV cells underwater is pliable in various commercial and defense applications, such as sensors, water monitoring systems, autonomous vehicles, underwater gliders, etc. In this article, first, a mathematical model has been developed for the solar cell spectrum to incorporate the changes in the solar irradiance with the depth of the water. Furthermore, an experimental setup was designed and implemented to mimic an underwater environment. The performance of the polycrystalline encapsulated solar cell was studied based on the different types of water and the depth of the solar cell underwater. This article manifests that there is a sufficient amount of underwater solar power that can be utilized using PV cells to operate various devices and systems.
关键词: polydimethylsiloxane (PDMS),Photovoltaic (PV) cells,underwater solar power,polycrystalline solar cell,solar spectrum,water salinity,solar irradiance
更新于2025-09-16 10:30:52