- 标题
- 摘要
- 关键词
- 实验方案
- 产品
过滤筛选
- 2019
- fan-in/out devices
- polymer optical waveguide
- the Mosquito method
- space division multiplexing
- Optoelectronic Information Science and Engineering
- Keio University
-
Time-dependent DFT and experimental study on visible light photocatalysis by metal oxides of Ti, V and Zn after complexing with a conjugated polymer
摘要: Density Functional Theory (DFT) and Time Dependent (TD)-DFT studies predict substantial modifications in optical properties of Transition Metal Oxides (TMOs) of Ti, V and Zn by complexing them with conjugated polymer polythiophene (PTh). The TMO nanostructures were synthesized and their complexes with polymers were fabricated using a chemical oxidative polymerization method. Coating of the TMOs with PTh and the nano-dimensional nature of the samples was confirmed by various morphological investigations such as infrared (IR), X-ray di?ractographs (XRD), High Resolution Transmission Electron Microscopy (HR-TEM) and field emission scanning electron microscopy (FE-SEM) techniques. The prepared samples were found to be a visible light driven photocatalyst. The sensitization of the complexes has been explained in terms of relative ordering of frontier orbitals of PTh and the TMO, and PTh qualified as an e?cient photosensitizer for all three metal oxides on the basis of its electronic characteristics. Since the Highest Occupied Molecular Orbital (HOMO) of PTh lies well between the band gap of all three TMOs, the electron transfer from donor (PTh) to acceptor (TMO) is facilitated. The appreciable red shift in the absorption spectrum and decrease in the optical band gap calculated by Tauc’s plot confirmed substantial reduction in the band gap of the formed complex in comparison to their bare counterparts. The isodensity plots established the PTh–TMO complexes as donor acceptor complexes and intermolecular charge transfer quantified the electron transfer from PTh (donor) to the TMOs (acceptor).
关键词: conjugated polymer,TD-DFT,visible light,metal oxides,DFT,photocatalysis,polythiophene,band gap tuning
更新于2025-11-14 17:04:02
-
Synthesis of Silver Nanoparticles Loaded onto Polymer-Inorganic Composite Materials and Their Regulated Catalytic Activity
摘要: We present a novel approach for the preparation of polymer-TiO2 composite microgels. These microgels were prepared by the in situ hydrolysis and condensation of titanium tetrabutoxide (TBOT) in a mixed ethanol/acetonitrile solvent system, using poly(styrene-co-N-isopropylacrylamide)/poly(N-isopropylacrylamide-co-methacrylic acid) (P(St-NIPAM/P(NIPAM-co-MAA)) as the core component. Silver nanoparticles (AgNPs) were controllably loaded onto the polymer-TiO2 composite microgels through the reduction of an ammoniacal silver solution in ethanol catalyzed by NaOH. The results showed that the P(St-NIPAM)/P(NIPAM-co-MAA)-TiO2 (polymer-TiO2) organic-inorganic composite microgels were less thermally sensitive than the polymer gels themselves, owing to rigid O–Ti–O chains introduced into the three-dimensional framework of the polymer microgels. The sizes of the AgNPs and their loading amount were controlled by adjusting the initial concentration of [Ag(NH3)2]+. The surface plasmon resonance (SPR) band of the P(St-NIPAM)/P(NIPAM-co-MAA)-TiO2/Ag (polymer-TiO2/Ag) composite microgels can be tuned by changing the temperature of the environment. The catalytic activities of the polymer-TiO2/Ag composite microgels were investigated in the NaBH4 reduction of 4-nitrophenol. It was demonstrated that the organic-inorganic network chains of the polymer microgels not only favor the mass transfer of the reactant but can also modulate the catalytic activities of the AgNPs by tuning the temperature.
关键词: silver nanoparticles,supported catalysts,polymer microgels,titania,reduction of 4-nitrophenol (4-NP)
更新于2025-11-14 17:03:37
-
Optical Characterization of Doped Thermoplastic and Thermosetting Polymer-Optical-Fibers
摘要: The emission properties of a graded-index thermoplastic polymer optical fiber and a step-index thermosetting one, both doped with rhodamine 6G, have been studied. The work includes a detailed analysis of the amplified spontaneous emission together with a study of the optical gains and losses of the fibers. The photostability of the emission of both types of fibers has also been investigated. Comparisons between the results of both doped polymer optical fibers are presented and discussed.
关键词: polymer optical fibers,thermoplastic fibers,rhodamine 6G,light-emitting polymers,optical gain,amplified spontaneous emission,thermosetting fibers
更新于2025-11-14 15:30:11
-
Syntheses, crystal structures, and photocatalytic properties of two zinc(II) coordination polymers based on dicarboxylates and flexible bis(benzimidazole) ligands
摘要: Two new ternary zinc(II) coordination polymers (CPs), catena-(μ2-phthalato)-(μ2-1,1'-hexane-1,6-diylbis(2-methyl-1H-benzimidazole))-zinc (CP 1) and catena-(μ2-phenylene-1,4-diacetato)-(μ2-1,1'-hexane-1,6-diylbis(1H-benzimidazole))-zinc (CP 2) were synthesized via hydrothermal process. CP 1 and CP 2 are named as [Zn(L1)(PA)]n and [Zn(L2)(PDA)]n (L1 = 1,1'-hexane-1,6-diylbis(2-methyl-1H-benzimidazole), L2 = 1,1'-hexane-1,6-diylbis(1H-benzimidazole), H2PA = phthalic acid, H2PDA = 1,4-phenylenediacetic acid)), respectively. Both CPs were characterized by elemental analysis, infrared spectroscopy, single crystal X-ray diffraction analysis. CP 1 possesses a 4-connected 66-dia network, CP 2 displays a 2D hcb layer with point symbol {63}. Luminescence, UV-vis diffuse reflection spectra, and photocatalytic properties of two CPs for the degradation of the methylene blue (MB) dye were investigated. The mechanism of photocatalytic degradation of MB was also suggested.
关键词: Zinc(II),Crystal structure,Bis(benzimidazole),Photocatalytic property,Coordination polymer
更新于2025-11-14 15:28:36
-
KMnF3:Yb3+,Er3+ Core-Active-Shell Nanoparticles with Broadband Down-Shifting Luminescence at 1.5 μm for Polymer-Based Waveguide Amplifiers
摘要: In this study, we prepared cubic-phase oleic-acid-coated KMnF3: Yb3+,Er3+ nanoparticles (NPs) and NaYF4:Yb3+,Er3+ NPs, which were about 23 nm. From the down-shifting emissions spectra of the two NPs obtained by 980 nm excitation, we observed the fact that the KMnF3: 18%Yb3+,1%Er3+ NPs were a luminescent material with a broadband near-infrared emission of 1.5 μm, and full-width at half-maximum (FWHM) of 55 cm?1, which was wider than that of the NaYF4: 18%Yb3+,1% NPs. Therefore, we believe that the oleic-acid-coated KMnF3:Yb3+,Er3+ NPs have great potential in fabricating broadband waveguide ampli?ers. Through epitaxial growth of a KMnF3: Yb3+ active-shell on the core NPs, we compounded KMnF3:Yb3+,Er3+@KMnF3:Yb3+ core-active-shell NPs whose 1.5-μm infrared emissions intensity was 3.4 times as strong as that of the core NPs. In addition, we manufactured waveguide ampli?ers using KMnF3:18%Yb3+,1%Er3+@KMnF3:2%Yb3+ NPs as the core materials of the waveguide ampli?ers. When the input signal power was 0.2 mW and the pump power was 200 mW, we achieved a relative gain of 0.6 dB at 1534 nm in a 10-mm long waveguide.
关键词: broadband,1.5 μm,KMnF3:Yb3+,Er3+ core-shell nanoparticles,polymer-based waveguide ampli?ers,down-shifting luminescence
更新于2025-11-14 15:27:09
-
Solubilization of Carbon Nanotubes with Ethylene-Vinyl Acetate for Solution-Processed Conductive Films and Charge Extraction Layers in Perovskite Solar Cells
摘要: Carbon nanotube (CNT) solubilization via non-covalent wrapping of conjugated semiconducting polymers is a common technique used to produce stable dispersions for depositing CNTs from solution. Here, we report the use of a non-conjugated insulating polymer, ethylene vinyl acetate (EVA), to disperse multi- and single-walled CNTs (MWCNT and SWCNT) in organic solvents. We demonstrate that despite the insulating nature of the EVA, we can produce semitransparent films with conductivities of up to 34 S/cm. We show, using photoluminescence spectroscopy, that the EVA strongly binds to individual CNTs, thus making them soluble, preventing aggregation, and facilitating the deposition of high-quality films. To prove the good electronic properties of this composite, we have fabricated perovskite solar cells using EVA/SWCNTs and EVA/MWCNTs as selective hole contact, obtaining power conversion efficiencies of up to 17.1%, demonstrating that the insulating polymer does not prevent the charge transfer from the active material to the CNTs.
关键词: perovskite solar cells,carbon nanotubes,insulating polymer,conductive films,CNT polymer functionalization
更新于2025-11-14 15:25:21
-
The impact of ZnO configuration as an external layer on the sensitivity of a bi-layer coated polymer optical fiber probe
摘要: Salinity magnitude changes are a critical factor for determining the chemistry of natural water bodies and biological processes. Label-free refractive index sensors are promising devices for detecting these changes. A polymer optical fiber (POF) sensor modified with cladding treatment and a bi-layer zinc oxide/silver (ZnO/Ag) nanostructure coating to determine sodium chloride concentration changes through refractive index variations in water is experimentally demonstrated. The use of three ZnO nanostructure shapes, nanoparticles and horizontally and vertically oriented nanorods, as an external layer and a broad spectrum light source from the visible (Vis) to the near infrared (NIR) region are investigated to achieve optimum sensitivity. The rms roughness, optical band-gap and zeta potential (ZP) value for the vertically oriented sample are 148 nm, 3.19 eV and 5.96 mV, respectively. In the NIR region the wavelength–intensity sensitivity values of probes coated with ZnO nanoparticles and horizontally and vertically oriented nanorods are 104 nm RIU?1–12 dB RIU?1, 63 nm RIU?1–10 dB RIU?1 and 146 nm RIU?1–22 dB RIU?1, respectively, and in the Vis area the values are 65 nm RIU?1–14 dB RIU?1, 58 nm RIU?1–11 dB RIU?1 and 89 nm RIU?1–23 dB RIU?1, respectively. The maximum amplitude sensitivity is obtained for the probe coated with vertically aligned ZnO nanorods in the NIR area due to the deeper penetration of evanescent waves, a higher surface-volume ratio, better crystallinity, more adhesive interactions with salt molecules, larger surface roughness and higher-order dispersion compared to the other coated ZnO nanostructures.
关键词: sensitivity,salinity,nanorods,refractive index sensors,ZnO/Ag nanostructure,polymer optical fiber,nanoparticles
更新于2025-11-14 15:25:21
-
Glutaraldehyde non-conjugated chitosan polymer fluorophores for selective determination of picric acid via fluorescence resonance energy transfer strategy
摘要: Water-dispersed glutaraldehyde (GA) non-conjugated chitosan polymer fluorophores (GCPF) with quantum yield of 16 % is synthesized by stirring chitosan and GA for 6 h at room temperature in the present work. It is a facile and mild method and fluorescent GCPF can be stabled for two months. Owing to the spectral overlap of fluorescent spectrum of GCPF and absorption spectrum of picric acid (PA), a novel sensitive fluorescent method using fluorescent GCPF for PA detection from 10 nM to 50 μM via fluorescence resonance energy transfer (FRET) strategy is established. The distance between donor of GCPF and acceptor of PA (R0 value) is calculated to be 3.5 nm. FRET method using fluorescent GCPF possesses high sensitivity (LOD of 2.8 nM), and selectivity and fast response within 2 min. Moreover, fluorescent GCPF is also utilized in visual analysis of PA using cotton swabs. Fluorescence quenching effect can be observed by eyes irradiated with 365 nm ultraviolet light at cotton swabs and using GCPF solid on quartz glasses, which paves an effect and wide way for the application of fluorescent GCPF in our daily life.
关键词: Glutaraldehyde non-conjugated chitosan polymer fluorophores (GCPF),picric acid (PA),fluorescence resonance energy transfer (FRET),glutaraldehyde (GA),chitosan
更新于2025-11-14 15:23:50
-
Significantly Enhanced Energy Density by Tailoring the Interface in a Hierarchical-Structured TiO2-BaTiO3-TiO2 Nanofillers in PVDF Based Thin Film Polymer Nanocomposite
摘要: Dielectric polymer nanocomposites with high breakdown field and high dielectric constant have drawn significant attention in modern electrical and electronic industries due to their potential applications in dielectric and energy storage systems. The interfaces of the nanomaterials play a significant role in improving the dielectric performance of polymer nanocomposites. In this work, polydopamine (dopa) functionalized TiO2-BaTiO3-TiO2 (TiO2-BT-TiO2@dopa) core@double-shell nanoparticles have been developed as novel nanofillers for high energy density capacitor application. The hierarchically designed nanofillers help in tailoring the interfaces surrounding the polymer matrix as well as act as individual capacitors in which core and outer TiO2 shell functions as capacitor plate because of their high electrical conductivity while the middle BT layer functions as a dielectric medium due to high dielectric constant. Detailed electrical characterizations have revealed that TiO2-BT-TiO2@dopa/PVDF possess maximum relative dielectric permittivity (εr), breakdown strength (Eb), as well as energy densities in comparison to PVDF, TiO2/PVDF, TiO2@dopa/PVDF, TiO2-BT@dopa/PVDF polymer nanocomposites. The εr and energy density of TiO2-BT-TiO2@dopa/PVDF was 12.6 at 1 kHz and 4.4 J cm-3 at 3128 kV cm-1, respectively, which was comparatively much higher than commercially available biaxially oriented polypropylene (BOPP) having εr of 2.2 and the energy density of 1.2 J cm-3 at much higher electric field of 6400 kV cm-1. It is expected that these results will further open new avenues for the design of novel architecture for high-performance polymer nanocomposites-based capacitors having core@multishell nanofillers with tailored interfaces.
关键词: capacitors,polymer nanocomposites,core-shell nanomaterials,dielectrics,BaTiO3 nanoparticles
更新于2025-11-14 15:19:41
-
Theoretical and experimental study of PTDPV optical and vibrational properties and its application in white electroluminescent blends
摘要: The polymer Poly[tris(2,5-bis(hexyloxy)-1,4-phenylenevinylene)-alt-(1,3-phenylenevinylene)] (PTDPV) has a broad range of visible emission extending from green to red, and thus may be useful for obtaining a white light emitting blend. Nevertheless, the amount of works found in the literature dealing with the optical emission properties of PTDPV is very small. In this work, we performed a study of the optical properties of this material using photoluminescence and of the vibrational properties using Raman and Fourier Transform Infrared Spectroscopy (FT-IR) techniques. At the same time, we use the Density Functional Theory (DFT) method to calculate the optical, vibrational and molecular properties of PTDPV. We have obtained the best DFT results using a hybrid functional and a simple basis set (DFT / B3LYP and 6–31 g *), without addition of correction or polarization factors (+). To reach these conclusions, we compared the HOMO and LUMO values obtained via DFT with those found in the literature. Furthermore, the Raman and IR simulations obtained using this basis set were compared with the experimental results of the PTDPV, showing great agreement. From the vibrational modes obtained, it was possible, using the Lin model [1–3], based on the Franck Condon approximations, to reconstruct the photoluminescence spectrum of the PTDPV. Based on these reconstructed spectra, it was possible to establish the contribution of the different vibrational modes to the vibronic emissions of the photoluminescence spectrum. The quality of the reconstruction obtained with the DFT results and that obtained with the experimental ones are very close, showing the possibility of using in this reconstruction the calculated vibrational modes when the experimental ones are not available. To demonstrate the application of this material, PFO:PTDPV blends were prepared, with which white photoluminescence was obtained. OLEDs prepared with these blends, in suitable proportions, emitted white light using low excitation power, demonstrating the feasibility of using PTDPV in OLEDs for lighting, which could be prepared by solution on large areas.
关键词: Photoluminescence,Raman and FT-IR,DFT method,PTDPV polymer,White electroluminescence
更新于2025-11-14 15:19:41