- 标题
- 摘要
- 关键词
- 实验方案
- 产品
-
The effect of iodide and temperature on enhancing antibacterial properties of nanoparticles with an encapsulated photosensitizer
摘要: Aqueous dispersions of sulfonated polystyrene nanoparticles (average diameter: 30 ± 14 nm) with encapsulated 5,10,15,20-tetraphenylporphyrin (TPP) are promising candidates for antibacterial treatments due to the photogeneration of cytotoxic singlet oxygen species O2(1Δg) under physiological conditions using visible light. The antibacterial effect on gram-negative Escherichia coli was significantly enhanced after the addition of nontoxic potassium iodide (0.001–0.01 M) because photogenerated O2(1Δg) oxidized iodide to I2/I3-, which is another antibacterial species. The improved antibacterial properties were predicted using luminescence measurements of O2(1Δg), transient absorption of TPP triplets and singlet oxygen-sensitized delayed fluorescence (SODF). In contrast to a solution of free photosensitizers, the aqueous dispersion of photoactive nanoparticles did not exhibit any quenching of the excited states after the addition of iodide or any tendency toward aggregation and/or photo-aggregation. We also observed a decrease in the lifetime of O2(1Δg) and a significant increase in SODF intensity at higher temperatures, due to the increased oxygen diffusion coefficient in nanoparticles and aqueous surroundings. This effect corresponds with the significantly stronger antibacterial effect of nanoparticles at physiological temperature (37 °C) in comparison with that at room temperature (25 °C).
关键词: Nanoparticles,Antibacterial,Potassium iodide,Singlet oxygen-sensitized delayed fluorescence,Singlet oxygen
更新于2025-09-23 15:22:29
-
An Insight Into the Potentiation Effect of Potassium Iodide on aPDT Efficacy
摘要: Antimicrobial photodynamic therapy (aPDT) is gaining a special importance as an effective approach against multidrug-resistant strains responsible of fatal infections. The addition of potassium iodide (KI), a non-toxic salt, is recognized to increase the aPDT efficiency of some photosensitizers (PSs) on a broad-spectrum of microorganisms. As the reported cases only refer positive aPDT potentiation results, in this work we selected a broad range of porphyrinic and non-porphyrinic PSs in order to gain a more comprehensive knowledge about this aPDT potentiation by KI. For this evaluation were selected a series of meso-tetraarylporphyrins positively charged at meso positions or at β-pyrrolic positions and the non-porphyrinic dyes Methylene blue, Rose Bengal, Toluidine Blue O, Malachite Green and Crystal Violet; the assays were performed using a bioluminescent E. coli strain as a model. The results indicate that KI has also the ability to potentiate the aPDT process mediated by some of the cationic PSs [Tri-Py(+)-Me, Tetra-Py(+)-Me, Form, RB, MB, Mono-Py(+)-Me, β-ImiPhTPP, β-ImiPyTPP, and β-BrImiPyTPP] allowing a drastic reduction of the treatment time as well as of the PS concentration. However, the efficacy of some porphyrinic and non-porphyrinic PSs [Di-Py(+)-Me opp, Di-Py(+)-Me adj, Tetra-Py, TBO, CV, and MG] was not improved by the presence of the coadjuvant. For the PSs tested in this study, the ones capable to decompose the peroxyiodide into iodine (easily detectable by spectroscopy or by the visual appearance of a blue color in the presence of amylose) were the most promising ones to be used in combination with KI. Although these studies confirmed that the generation of 1O2 is an important fact in this process, the PS structure (charge number and charge position), aggregation behavior and affinity for the cell membrane are also important features to be taken in account.
关键词: cationic porphyrins,xanthenes,potassium iodide,phenothiazines,bioluminescent E. coli,antimicrobial photodynamic therapy
更新于2025-09-23 15:21:01
-
A study nanocrystalline TiO 2 based on dye sensitized solar cells with quasi solid state electrolytes
摘要: A quasi solid state electrolytes can be done by adding potassium iodide (KI) and iodine (I2) into quasi solid state electrolytes. Consisting 1,2,4,5–tetrakisbromomethyl benzene (TB), ? –butyrolactone (GBL), propylene carbonate (PC), and ethylene carbonate (EC) gelated with sample 1, 2, 3 and 4. Potassium iodide salt poorly soluble in liquid electrolyte, but can dissolve completely in quasi solid state electrolytes. The dye sensitized solar cell (DSSCs) with the quasi solid state electrolytes were fabricated. The results showed that the energy conversion efficiency of light to electricity were 0.052 %, 0.126 %, 0.121 % and 0.125 %., respectively, under irradiation of 80 mW/cm2. The performance of the dye sensitized solar cell with quasi solid state electrolytes is more stable than that of liquid electrolytes.
关键词: TiO2,dye sensitized solar cell,potassium iodide,iodide salts,quasi solid state electrolytes,energy conversion efficiency
更新于2025-09-12 10:27:22
-
Beneficial effects of potassium iodide incorporation on grain boundaries and interfaces of perovskite solar cells
摘要: Grain boundaries and interfacial impurities are the main factors that limit the further development of polycrystalline perovskite solar cells because their existence severely deteriorates the device performance. In order to optimize the efficiency of perovskite solar cells, it is essential to eliminate these defects. In the present work, potassium iodide (KI) is incorporated into the perovskite absorber. KI incorporation improves the crystallinity of the perovskite, increases the grain size, and decreases the contact potential distribution at the grain boundary, which are verified by X-ray diffraction, scanning electronic microscopy and Kelvin probe force microscopy. Besides, the activation energy of the recombination, estimated from the temperature dependent current–voltage of perovskite solar cells, is larger than the bandgap calculated from the temperature coefficient. These suggest that KI incorporation effectively passivates the grain boundaries and interfacial defects. As a result, charge trapping in the absorber as well as the bimolecular and trap-assisted recombination of the device are significantly suppressed. Consequently, the open circuit voltage and fill factor of the incorporated devices are greatly improved, enabling an optimized power conversion efficiency of 19.5%, in comparison with that of 17.3% for the control one. Our work provides an effective strategy of defect passivation in perovskite solar cells by KI incorporation and clarifies the mechanism of the performance optimization of KI incorporated devices.
关键词: potassium iodide,perovskite solar cells,defect passivation,grain boundaries,power conversion efficiency
更新于2025-09-11 14:15:04
-
Antimicrobial Photodynamic Inactivation Mediated by Tetracyclines in Vitro and in Vivo: Photochemical Mechanisms and Potentiation by Potassium Iodide
摘要: Tetracyclines (including demeclocycline, DMCT, or doxycycline, DOTC) represent a class of dual-action antibacterial compounds, which can act as antibiotics in the dark, and also as photosensitizers under illumination with blue or UVA light. It is known that tetracyclines are taken up inside bacterial cells where they bind to ribosomes. In the present study, we investigated the photochemical mechanism: Type 1 (hydroxyl radicals); Type 2 (singlet oxygen); or Type 3 (oxygen independent). Moreover, we asked whether addition of potassium iodide (KI) could potentiate the aPDI activity of tetracyclines. High concentrations of KI (200–400 mM) strongly potentiated (up to 5 logs of extra killing) light-mediated killing of Gram-negative Escherichia coli or Gram-positive MRSA (although the latter was somewhat less susceptible). KI potentiation was still apparent after a washing step showing that the iodide could penetrate the E. coli cells where the tetracycline had bound. When cells were added to the tetracycline + KI mixture after light, killing was observed in the case of E. coli showing formation of free molecular iodine. Addition of azide quenched the formation of iodine but not hydrogen peroxide. DMCT but not DOTC iodinated tyrosine. Both E. coli and MRSA could be killed by tetracyclines plus light in the absence of oxygen and this killing was not quenched by azide. A mouse model of a superficial wound infection caused by bioluminescent E. coli could be treated by topical application of DMCT and blue light and bacterial regrowth did not occur owing to the continued antibiotic activity of the tetracycline.
关键词: Tetracyclines,Antimicrobial photodynamic inactivation,Photochemical mechanisms,Oxygen independent killing,Potassium iodide
更新于2025-09-11 14:15:04
-
Inorganic Salts and Antimicrobial Photodynamic Therapy: Mechanistic Conundrums?
摘要: We have recently discovered that the photodynamic action of many different photosensitizers (PSs) can be dramatically potentiated by addition of a solution containing a range of different inorganic salts. Most of these studies have centered around antimicrobial photodynamic inactivation that kills Gram-negative and Gram-positive bacteria in suspension. Addition of non-toxic water-soluble salts during illumination can kill up to six additional logs of bacterial cells (one million-fold improvement). The PSs investigated range from those that undergo mainly Type I photochemical mechanisms (electron transfer to produce superoxide, hydrogen peroxide, and hydroxyl radicals), such as phenothiazinium dyes, fullerenes, and titanium dioxide, to those that are mainly Type II (energy transfer to produce singlet oxygen), such as porphyrins, and Rose Bengal. At one extreme of the salts is sodium azide, that quenches singlet oxygen but can produce azide radicals (presumed to be highly reactive) via electron transfer from photoexcited phenothiazinium dyes. Potassium iodide is oxidized to molecular iodine by both Type I and Type II PSs, but may also form reactive iodine species. Potassium bromide is oxidized to hypobromite, but only by titanium dioxide photocatalysis (Type I). Potassium thiocyanate appears to require a mixture of Type I and Type II photochemistry to ?rst produce sul?te, that can then form the sulfur trioxide radical anion. Potassium selenocyanate can react with either Type I or Type II (or indeed with other oxidizing agents) to produce the semi-stable selenocyanogen (SCN)2. Finally, sodium nitrite may react with either Type I or Type II PSs to produce peroxynitrate (again, semi-stable) that can kill bacteria and nitrate tyrosine. Many of these salts (except azide) are non-toxic, and may be clinically applicable.
关键词: potassium thiocyanate,potentiation by inorganic salts,potassium bromide,potassium iodide,sodium azide,antimicrobial photodynamic inactivation,potassium selenocyanate,sodium nitrite
更新于2025-09-09 09:28:46