修车大队一品楼qm论坛51一品茶楼论坛,栖凤楼品茶全国楼凤app软件 ,栖凤阁全国论坛入口,广州百花丛bhc论坛杭州百花坊妃子阁

oe1(光电查) - 科学论文

16 条数据
?? 中文(中国)
  • Deep p-ring trench termination: An innovative and cost-effective way to reduce silicon area

    摘要: A new type of high voltage termination, namely the 'deep p-ring trench' termination design for high voltage, high power devices is presented and extensively simulated. Termination of such devices consumes a large proportion of the chip size; the proposed design concept not only reduces the termination silicon area required, it also removes the need for an additional mask as is the case of the traditional p+ ring type termination. Furthermore, the presence of the p-ring under and around the bottom of the trench structure reduces the electric field peaks at the corners of the oxide which results in reduced hot carrier injection and improved device reliability.

    关键词: Termination,High Voltage,Power Semiconductor Devices

    更新于2025-09-23 15:23:52

  • [IEEE 2019 IEEE Research and Applications of Photonics in Defense Conference (RAPID) - Miramar Beach, FL, USA (2019.8.19-2019.8.21)] 2019 IEEE Research and Applications of Photonics in Defense Conference (RAPID) - Small Batch Production and Test of Custom Support Electronics for Infrared LED Scene Projectors

    摘要: This letter reports a GaN vertical trench metal–oxide–semiconductor field-effect transistor (MOSFET) with normally-off operation. Selective area regrowth of n+-GaN source layer was performed to avoid plasma etch damage to the p-GaN body contact region. A metal-organic-chemical-vapor-deposition (MOCVD) grown AlN/SiN dielectric stack was employed as the gate “oxide”. This unique process yielded a 0.5-mm2-active-area transistor with threshold voltage of 4.8 V, blocking voltage of 600 V at gate bias of 0 V, and on-resistance of 1.7 Ω at gate bias of 10 V.

    关键词: GaN,vertical transistor,MOSFET,power semiconductor devices

    更新于2025-09-23 15:21:01

  • [IEEE 2019 IEEE 16th International Conference on Group IV Photonics (GFP) - Singapore, Singapore (2019.8.28-2019.8.30)] 2019 IEEE 16th International Conference on Group IV Photonics (GFP) - Near Infrared Absorption Enhancement of Graphene for High-Responsivity Photodetection

    摘要: As a key component in the wind turbine system, the power electronic converter and its power semiconductors suffer from complicated power loadings related to environment, and are proven to have high failure rates. Therefore, correct lifetime estimation of wind power converter is crucial for the reliability improvement and also for cost reduction of wind power technology. Unfortunately, the existing lifetime estimation methods for the power electronic converter are not yet suitable in the wind power application, because the comprehensive mission profiles are not well specified and included. Consequently, a relative more advanced approach is proposed in this paper, which is based on the loading and strength analysis of devices and takes into account different time constants of the thermal behaviors in power converter. With the established methods for loading and lifetime estimation for power devices, more detailed information of the lifetime-related performance in wind power converter can be obtained. Some experimental results are also included to validate the thermal behavior of power device under different mission profiles.

    关键词: lifetime prediction,IGBT,power semiconductor device,thermal cycling,wind power,mission profiles

    更新于2025-09-23 15:19:57

  • Coexistence of quasi-CW and SBS-boosted self-Q-switched pulsing in ytterbium-doped fiber laser with low Q-factor cavity

    摘要: As a key component in the wind turbine system, the power electronic converter and its power semiconductors suffer from complicated power loadings related to environment, and are proven to have high failure rates. Therefore, correct lifetime estimation of wind power converter is crucial for the reliability improvement and also for cost reduction of wind power technology. Unfortunately, the existing lifetime estimation methods for the power electronic converter are not yet suitable in the wind power application, because the comprehensive mission profiles are not well specified and included. Consequently, a relative more advanced approach is proposed in this paper, which is based on the loading and strength analysis of devices and takes into account different time constants of the thermal behaviors in power converter. With the established methods for loading and lifetime estimation for power devices, more detailed information of the lifetime-related performance in wind power converter can be obtained. Some experimental results are also included to validate the thermal behavior of power device under different mission profiles.

    关键词: lifetime prediction,IGBT,power semiconductor device,thermal cycling,wind power,mission profiles

    更新于2025-09-23 15:19:57

  • [IEEE 2019 FISE-IEEE/CIGRE Conference - Living the energy Transition (FISE/CIGRE) - Medellin, Colombia (2019.12.4-2019.12.6)] 2019 FISE-IEEE/CIGRE Conference - Living the energy Transition (FISE/CIGRE) - Abating carbon emissions by means of utility-scale photovoltaics and storage: the Duke Energy Progress/Carolinas case study

    摘要: A Sn-doped (100) β-Ga2O3 epitaxial layer was grown via metal–organic vapor phase epitaxy onto a single-crystal, Mg-doped semi-insulating (100) β-Ga2O3 substrate. Ga2O3-based metal–oxide–semiconductor field-effect transistors with a 2-μm gate length (L G), 3.4-μm source–drain spacing (LSD), and 0.6-μm gate–drain spacing (LGD) were fabricated and characterized. Devices were observed to hold a gate-to-drain voltage of 230 V in the OFF-state. The gate-to-drain electric field corresponds to 3.8 MV/cm, which is the highest reported for any transistor and surpassing bulk GaN and SiC theoretical limits. Further performance projections are made based on layout, process, and material optimizations to be considered in future iterations.

    关键词: MOVPE,β-Ga2O3,MOSFETs,power semiconductor devices

    更新于2025-09-23 15:19:57

  • [IEEE 2019 44th International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz) - Paris, France (2019.9.1-2019.9.6)] 2019 44th International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz) - Realizing Asymmetric Boundary Conditions for Plasmonic THz Wave Generation in HEMTs

    摘要: As a key component in the wind turbine system, the power electronic converter and its power semiconductors suffer from complicated power loadings related to environment, and are proven to have high failure rates. Therefore, correct lifetime estimation of wind power converter is crucial for the reliability improvement and also for cost reduction of wind power technology. Unfortunately, the existing lifetime estimation methods for the power electronic converter are not yet suitable in the wind power application, because the comprehensive mission profiles are not well specified and included. Consequently, a relative more advanced approach is proposed in this paper, which is based on the loading and strength analysis of devices and takes into account different time constants of the thermal behaviors in power converter. With the established methods for loading and lifetime estimation for power devices, more detailed information of the lifetime-related performance in wind power converter can be obtained. Some experimental results are also included to validate the thermal behavior of power device under different mission profiles.

    关键词: power semiconductor device,lifetime prediction,thermal cycling,wind power,IGBT,mission profiles

    更新于2025-09-19 17:13:59

  • High wall-plug efficiency 808-nm laser diodes with a power up to 30.1 W

    摘要: A very highly efficient InGaAlAs/AlGaAs quantum-well structure was designed for 808 nm emission, and laser diode chips 390-μm-wide aperture and 2-mm-long cavity length were fabricated. Special pretreatment and passivation for the chip facets were performed to achieve improved reliability performance. The laser chips were p-side-down mounted on the AlN submount, and then tested at continuous wave (CW) operation with the heat-sink temperature setting to 25 °C using a thermoelectric cooler (TEC). As high as 60.5% of the wall-plug efficiency (WPE) was achieved at the injection current of 11 A. The maximum output power of 30.1 W was obtained at 29.5 A when the TEC temperature was set to 12 °C. Accelerated life-time test showed that the laser diodes had lifetimes of over 62 111 h operating at rated power of 10 W.

    关键词: high power semiconductor lasers,COMD,high wall-plug efficiency

    更新于2025-09-19 17:13:59

  • [IEEE 2019 16th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology (ECTI-CON) - Pattaya, Chonburi, Thailand (2019.7.10-2019.7.13)] 2019 16th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology (ECTI-CON) - Antenna Gain Self-calibration for Double Ridged Guide Horn Antenna using Bi-directional Optical Fiber Link Transceiver

    摘要: This letter reports a GaN vertical trench metal–oxide–semiconductor field-effect transistor (MOSFET) with normally-off operation. Selective area regrowth of n+-GaN source layer was performed to avoid plasma etch damage to the p-GaN body contact region. A metal-organic-chemical-vapor-deposition (MOCVD) grown AlN/SiN dielectric stack was employed as the gate “oxide”. This unique process yielded a 0.5-mm2-active-area transistor with threshold voltage of 4.8 V, blocking voltage of 600 V at gate bias of 0 V, and on-resistance of 1.7 Ω at gate bias of 10 V.

    关键词: GaN,vertical transistor,MOSFET,power semiconductor devices

    更新于2025-09-19 17:13:59

  • Hybrid Process of Laser Heat Treatment and Forming of Thin Plate with a Small Power Semiconductor Laser

    摘要: In recent years, the recycling of resources has become important because of the aggravation of global environmental concerns. In light of this, it is necessary to minimize the resource needs of current production systems. This concept is called sustainable development. When this concept is applied to machine tools, the assumption is that small parts should be processed using small machines. Additionally, the diversification of consumer needs and the ephemeralization of product life cycles are progressing in industry. As a result, the overall production system has changed from high-mix low-volume production manufacturing, to variant types in variable quantity. In this background, the cell production system is receiving attention as a production system that can achieve variant types in variable quantity. The cell production system also requires miniaturization and process consolidation of machine tools, which has given rise to the need to consolidate heat treatments, especially as part of the process consolidation of machine tools. Laser beams have proved to be effective heat sources when integrated into heat-treatment processes, such as quenching and tempering on machine tool tables. On the other hand, In the case of the thin plate, it is well known that the deformation of a plate occurs due to laser irradiation, as named a laser forming. The laser forming is also effective to generate the complex shape without a press die set. Thus, we propose that the hybrid process of laser heat treatment and forming of thin plate with a small power semiconductor laser, and demonstrate that the proposed method makes it feasible to generate the hardened sheet metal products with a compact machine tools. Moreover, considering the power consumption in laser quenching and forming process, we investigate an appropriate laser irradiation condition from a view of reducing the environmental burden.

    关键词: Laser forming,Compact machine tools,Sustainable manufacturing,Laser heat treatment,Small power semiconductor laser

    更新于2025-09-16 10:30:52

  • [IEEE 2019 21st European Conference on Power Electronics and Applications (EPE '19 ECCE Europe) - Genova, Italy (2019.9.3-2019.9.5)] 2019 21st European Conference on Power Electronics and Applications (EPE '19 ECCE Europe) - Laser triggering of solid-state switches

    摘要: A theoretical and experimental investigation has been made into the laser activated Silicon Controlled Rectifier (SCR) turn-on process. Thanks to the measurement of illumination profile of the thyristor gate and a one-dimensional commutation model, a prediction can be made of the temperature hotspots of the initially conducting area region adjacent to the gate. The improvement of switching characteristics with respect to the datasheet parameters for an electrically gated configuration will be demonstrated; 8-fold turn-on delay reduction and the rate of rise of the on-state current (di/dt) increased over 45 times at low pulse repetition rate, without destroying the device.

    关键词: New switching devices,Thyristors,Photovoltaic,Switching losses,Particle accelerator,Transistor,Pulsed power,Semiconductor device

    更新于2025-09-16 10:30:52