修车大队一品楼qm论坛51一品茶楼论坛,栖凤楼品茶全国楼凤app软件 ,栖凤阁全国论坛入口,广州百花丛bhc论坛杭州百花坊妃子阁

oe1(光电查) - 科学论文

4 条数据
?? 中文(中国)
  • Quantum gate identification: Error analysis, numerical results and optical experiment

    摘要: The identification of an unknown quantum gate is a significant issue in quantum technology. In this paper, we propose a quantum gate identification method within the framework of quantum process tomography. In this method, a series of pure states are applied to the gate and then a fast state tomography on the output states is performed and the data are used to reconstruct the quantum gate. The algorithm has computational complexity O(d3) with the system dimension d. The identification approach is compared with the maximum likelihood estimation method for the running time, which shows an efficiency advantage of our method. An error upper bound is established for the identification algorithm and the robustness of the algorithm against impurities in the input states is also tested. We perform a quantum optical experiment on a single-qubit Hadamard gate to verify the effectiveness of the identification algorithm.

    关键词: Quantum system,Quantum tomography,Quantum gate identification,Computational complexity

    更新于2025-09-23 15:22:29

  • Atomic swap gate, driven by position fluctuations, in dispersive cavity optomechanics

    摘要: Tracing the dynamics of a quantum system using a mesoscopic device is an important topic of interest nowadays. Here we show how a mesoscopic mechanical oscillator can be used to steer the dynamics of a coupled two-atom system and thereby to implement a two-qubit universal gate. We have theoretically studied a generic hybrid atom-optomechanical system where two identical atoms in Λ configuration are trapped inside the cavity and the cavity mode mediates the interaction between the atoms and the mechanical oscillator. Adiabatic elimination of the lossy channels, namely, cavity decay and spontaneous emission, is adopted to obtain an effective Hamiltonian. This Hamiltonian is responsible for two-atom swap and √SWAP gates, controlled by the position fluctuation of the oscillator. The validity of the proposal for successful implementation is assessed using presently available experimental parameters.

    关键词: quantum gate,trapped atoms,quantum fluctuations,Cavity optomechanics

    更新于2025-09-23 15:21:21

  • Molecular States of Composite Fermions in Self-Organized InP/GaInP Quantum Dots in Zero Magnetic Field

    摘要: The size and positions of regions of line localization and the magnetic-field (0–10 T) dependence of the low-temperature (10 K) photoluminescence spectra of single InP/GaInP quantum dots with a number of electrons of N = 5–7 and a Wigner–Seitz radius of ~2.5 are determined using a near-field scanning optical microscope. The formation of composite fermion molecules with a size coinciding with that of localization regions and bond lengths of ~30 and 50 nm, respectively, at a Landau-level filling factor from 1/2 to 2/7 in zero magnetic field is established. At N = 6, the pairing and rearrangement of composite fermions under photoexcitation are found, which offers opportunities for the use of InP/GaInP quantum dots to create a magnetic-field-free topological quantum gate.

    关键词: InP/GaInP quantum dots,near-field scanning microscopy,photoluminescence,composite fermions,topological quantum gate

    更新于2025-09-23 15:19:57

  • Computational Assessment of Silicon Quantum Gate Based on Detuning Mechanism for Quantum Computing

    摘要: Silicon-based quantum computing has the potential advantages of low cost, high integration density, and compatibility with CMOS technologies. The detuning mechanism has been used to experimentally achieve silicon two-qubit quantum gates and programmable quantum processors. In this paper, the scaling behaviors and variability issues are explored by numerical device simulations of a model silicon quantum gate based on the detuning mechanism. The device physics of quantum gates modulation, tradeoff between device speed and quantum fidelity, and impact of variability on the implementation of a quantum algorithm are examined. The results indicate the attractive potential to achieve high speed and fidelity silicon quantum gates with a low operation voltage. To scale up, reducing the device variability and mitigating the variability effect are identified to be indispensable for reliable implementing a quantum computing algorithm with the silicon quantum gates based on the detuning mechanism. A scheme to use the control electronics for mitigating the variability of quantum gates is proposed.

    关键词: variability,quantum gate,Detuning,device modeling

    更新于2025-09-11 14:15:04