- 标题
- 摘要
- 关键词
- 实验方案
- 产品
-
Sharp increase in the density of states in PbTe upon approaching a saddle point in the band structure
摘要: PbTe is a leading mid-range thermoelectric material with a zT that has been enhanced by, amongst other methods, band engineering. Here we present an experimental study of the Hall effect, quantum oscillations, specific heat, and electron microprobe analysis that explores the evolution of the electronic structure of PbTe heavily doped with the 'ideal' acceptor Na up to the solubility limit. We identify two phenomenological changes that onset as the electronic structure deviates from a Kane-type dispersion at around 180 meV; a qualitative change in the field dependence of the Hall effect indicative of an increase in the high-field limit and a change in the Fermiology, and a sharp increase in the density of states as a function of energy. Following consideration of three possible origins for the observed phenomenology we conclude that the most likely source is nonellipsoidicity of the L pocket upon approach to a saddle point in the band structure, which is evidenced directly by our quantum oscillation measurements. Comparison to density functional theory calculations imply that this evolution of the electronic structure may be a key contributor to the large thermopower in PbTe.
关键词: band structure,PbTe,Hall effect,density of states,thermoelectric,quantum oscillations
更新于2025-09-23 15:23:52
-
High-frequency breakdown of the integer quantum Hall effect in GaAs/AlGaAs heterojunctions
摘要: The integer quantum Hall effect is a well-studied phenomenon at frequencies below about 100 Hz. The plateaus in high-frequency Hall conductivity were experimentally proven to retain up to 33 GHz, but the behavior at higher frequencies has remained largely unexplored. Using continuous-wave terahertz spectroscopy, the complex Hall conductivity of GaAs/AlGaAs heterojunctions was studied in the range of 69–1100 GHz. Above 100 GHz, the quantum plateaus are strongly smeared out and replaced by weak quantum oscillations in the real part of the conductivity. The amplitude of the oscillations decreases with increasing frequency. Near 1 THz, the Hall conductivity does not reveal any features related to the filling of Landau levels. Similar oscillations are observed in the imaginary part as well; this effect has no analogy at zero frequency. This experimental picture is in disagreement with existing theoretical considerations of the high-frequency quantum Hall effect.
关键词: integer quantum Hall effect,GaAs/AlGaAs heterojunctions,terahertz spectroscopy,high-frequency Hall conductivity,quantum oscillations
更新于2025-09-23 15:22:29
-
Interplay of structure and charge order revealed by quantum oscillations in thin films of
摘要: The discovery of quantum oscillations in hole- and electron-doped cuprate families has underscored the importance of the Fermi surface in cuprate superconductivity. While the observed quantum oscillations in both families have revealed the presence of reconstructed Fermi surfaces, there remains an important distinction between the two. In hole-doped cuprates the oscillations are thought to arise from the effects of a charge density wave, while in the electron-doped cuprates it is thought that these oscillations occur from an antiferromagnetically reconstructed Fermi surface, despite the fact that the oscillations are observed in overdoped compounds, far from the putative antiferromagnetic critical point. In this work we study thin films of Pr2CuO4±δ, whose apparent doping can be finely tuned by annealing, allowing studies of quantum oscillations in samples straddling the critical point. We show that even though there is a mass enhancement of the quasiparticles, there are only small changes to the Fermi surface itself, suggesting that charge order is a more likely origin, with electronic correlations that are strongly dependent on the structural parameters.
关键词: antiferromagnetic critical point,Fermi surface,cuprate superconductivity,quantum oscillations,charge density wave
更新于2025-09-12 10:27:22