- 标题
- 摘要
- 关键词
- 实验方案
- 产品
-
Recurrent conditional generative adversarial network for image deblurring
摘要: Nowadays, there is an increasing demand for images with high definition and fine textures, but images captured in natural scenes usually suffer from complicated blurry artifacts, caused mostly by object motion or camera shaking. Since these annoying artifacts greatly decrease image visual quality, deblurring algorithms have been proposed from various aspects. However, most energy-optimization-based algorithms rely heavily on blur kernel priors, and some learning-based methods either adopt pixel-wise loss function or ignore global structural information. Therefore, we propose an image deblurring algorithm based on recurrent conditional generative adversarial network (RCGAN), in which the scale-recurrent generator extracts sequence spatio-temporal features and reconstructs sharp images in a coarse-to-fine scheme. To thoroughly evaluate the global and local generator performance, we further propose a receptive field recurrent discriminator. Besides, the discriminator takes blurry images as conditions, which help to differentiate reconstructed images from real sharp ones. Last but not least, since the gradients are vanishing when training generator with the output of discriminator, a progressive loss function is proposed to enhance the gradients in back-propagation and to take full advantages of discriminative features. Extensive experiments prove the superiority of RCGAN over state-of-the-art algorithms both qualitatively and quantitatively.
关键词: coarse-to-fine,Image deblurring,receptive field recurrent,conditional generative adversarial network
更新于2025-09-23 15:23:52
-
[IEEE 2018 International Joint Conference on Neural Networks (IJCNN) - Rio de Janeiro (2018.7.8-2018.7.13)] 2018 International Joint Conference on Neural Networks (IJCNN) - Investigation into Sub-Receptive Fields of Retinal Ganglion Cells with Natural Images
摘要: Determining the receptive field of a retinal ganglion cell is critically important when formulating a computational model that maps the relationship between the stimulus and response. This process is traditionally undertaken using reverse correlation to estimate the receptive field. By stimulating the retina with artificial stimuli, such as alternating checkerboards, bars or gratings and recording the neural response it is possible to estimate the cell’s receptive field by analysing the stimuli that produced the response. Artificial stimuli such as white noise is known to not stimulate the full range of the cell’s responses. By using natural image stimuli, it is possible to estimate the receptive field and obtain a resulting model that more accurately mimics the cells’ responses to natural stimuli. This paper extends on previous work to seek further improvements in estimating a ganglion cell’s receptive field by considering that the receptive field can be divided into subunits. It is thought that these subunits may relate to receptive fields which are associated with bipolar retinal cells. The findings of this preliminary study show that by using subunits to define the receptive field we achieve a significant improvement over existing approaches when deriving computational models of the cell’s response.
关键词: computational modelling,visual neuroscience,receptive field,retinal ganglion cell
更新于2025-09-19 17:15:36
-
Unified No-Reference Quality Assessment of Singly and Multiply Distorted Stereoscopic Images
摘要: A challenging problem in no-reference quality assessment of multiply distorted stereoscopic images (MDSIs) is to simulate the monocular and binocular visual properties under a mixed type of distortions. Due to the joint effects of multiple distortions in MDSIs, the underlying monocular and binocular visual mechanisms have different manifestations with those of singly distorted stereoscopic images (SDSIs). This paper presents a unified no-reference quality evaluator for SDSIs and MDSIs by learning monocular and binocular local visual primitives (MB-LVPs). The main idea is to learn MB-LVPs to characterize the local receptive field properties of the visual cortex in response to SDSIs and MDSIs. Furthermore, we also consider that the learning of primitives should be performed in a task-driven manner. For this, two penalty terms including reconstruction error and quality inconsistency are jointly minimized within a supervised dictionary learning framework, generating a set of quality-oriented MB-LVPs for each single and multiple distortion modality. Given an input stereoscopic image, feature encoding is performed using the learned MB-LVPs as codebooks, resulting in the corresponding monocular and binocular responses. Finally, responses across all the modalities are fused with probabilistic weights which are determined by the modality-specific sparse reconstruction errors, yielding the final monocular and binocular features for quality regression. The superiority of our method has been verified on several SDSI and MDSI databases.
关键词: multiply distorted,singly distorted,receptive field,monocular and binocular vision,stereoscopic image,local visual primitive,No-reference image quality assessment
更新于2025-09-09 09:28:46
-
Characterization of Retinal Functionality at Different Eccentricities in a Diurnal Rodent
摘要: Although the properties of the neurons of the visual system that process central and peripheral regions of the visual field have been widely researched in the visual cortex and the LGN, they have scarcely been documented for the retina. The retina is the first step in integrating optical signals, and despite considerable efforts to functionally characterize the different types of retinal ganglion cells (RGCs), a clear account of the particular functionality of cells with central vs. peripheral fields is still wanting. Here, we use electrophysiological recordings, gathered from retinas of the diurnal rodent Octodon degus, to show that RGCs with peripheral receptive fields (RF) are larger, faster, and have shorter transient responses. This translates into higher sensitivity at high temporal frequencies and a full frequency bandwidth when compared to RGCs with more central RF. We also observed that imbalances between ON and OFF cell populations are preserved with eccentricity. Finally, the high diversity of functional types of RGCs highlights the complexity of the computational strategies implemented in the early stages of visual processing, which could inspire the development of bio-inspired artificial systems.
关键词: retina,central vs. periphery,MEA,RGCs,spatiotemporal analysis,receptive field properties
更新于2025-09-04 15:30:14